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Pendry’s perfect lens has spurred intense interest for its practical realization at visible frequencies. However,
fabrication of low-loss isotropic left-handed metamaterials is a current challenge. In this work, we theoretically
show that under specific conditions anisotropic metamaterial slabs can emulate Pendry’s perfect-lens phenom-
enon on a plane. Geometric optics leads to a new lens formula for this special anisotropic metamaterial
superlens, which allows significant shrinkage of the metamaterial slab thickness for a certain range of far-field
operation. Conversely, such anisotropic metamaterial superlens with the same thickness as its isotropic analog
can operate for much larger distances between object and lens. We present numerical simulations which
confirm our theoretical calculations. In particular, we find subdiffraction focusing that rivals the perfect iso-
tropic negative-index metamaterial lens performance and obeys the new lens formula as predicted. In addition,
we demonstrate that it is possible to attain far-field superfocusing with a metamaterial slab as thin as half the
free-space wavelength. We believe this work will inspire new anisotropic metamaterial designs and opens a
promising route for the realization of compact far-field superlenses in the visible regime.
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I. INTRODUCTION

Pendry envisioned the existence of a “perfect lens” in
2000,1 which would resolve beyond the diffraction limit.
Such perfect lens is essentially a flat slab made of the Vese-
lago negative-index metamaterial �NIM� �Ref. 2� having
both permittivity and permeability simultaneously negative
and equal to −1. The basic mechanism which leads to the
super-resolving power of the perfect lens is the reconstruc-
tion of all wave vectors emitted from the source, both radia-
tive �far field� and dark �near field�. The NIM with permit-
tivity and permeability simultaneously equal to −1 causes a
beam to totally refract with a negative angle equal in mag-
nitude to the angle of incidence from air. As a result, all
far-field Fourier components of a point source meet at the
same point inside such metamaterial slab and cross again
after refracting at the second slab interface with no loss of
intensity. The near-field source components decay in air but
are exactly compensated by exponential increase in their in-
tensity inside the metamaterial slab.1,3 Consequently, an im-
age produced by the perfect lens would contain as much
detail as the object. With geometric ray tracing it can be
easily shown that the distance between the source and the
first slab interface and the distance between the image and
the second slab interface add up exactly to the thickness of
the perfect-lens slab. The latter relation is widely known as
the perfect-lens formula.

Pendry’s pioneering work motivated an increasing num-
ber of efforts to bring the existence of the Veselago NIM out
of the realm of fiction. Effective NIMs based on different
designs have been proposed and realized by various
groups.4–6 Initial microwave NIM designs paved the way for

fabrication of NIMs in THz and near-IR frequencies with
fishnet metamaterials being realized all the way up to the
visible spectrum.7 Although recent progress in new con-
nected metamaterial designs8 and new fabrication
techniques9 give promise for the realization of three-
dimensional isotropic NIMs, such goal has not been accom-
plished to this date.

Therefore, many research investigations focused on
whether it would be possible to achieve subdiffraction focus-
ing by maintaining only some of the features of Pendry’s
perfect lens. One explored avenue was to use photonic crys-
tal �PC� media that emulate the refractive properties of the
Veselago medium with refractive index, n, equal to −1.10,11

Indeed, subdiffraction focusing was reported in these type of
photonic crystals,12,13 which emanates from the refocusing of
only all far-field source components in a manner analogous
to the effect in the Veselago medium with n=−1. These su-
perlenses operate in the far field but their performance is
restricted due to impedance mismatch losses at the air-PC
interface. Then, theoretical14 and experimental15,16 works
demonstrated that it is possible to achieve super-resolution
by reconstructing only the dark components of the source.
The latter is enabled by the coupling of surface-plasmon po-
laritons �SPPs� at each interface of a thin metal slab. How-
ever, unavoidably this type of superfocusing is restricted in
the near-field zone only.

More recently, another path to transfer the dark compo-
nents of the source has been proposed. Let’s consider a
uniaxial effective either electric17,18 or magnetic19,20 metama-
terial where the permittivity or permeability, respectively,
along the optical axis is opposite in sign to the permittivities
and permeabilities in the other two principal directions. An
electromagnetic �EM� wave propagating in such medium is
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subject to a hyperbolic dispersion relations and is character-
ized by conventional forward �not backward� type of propa-
gation. With proper choice of the interface of a slab made
from such material, this type of hyperbolic dispersion rela-
tion causes all dark components of the source to convert into
propagating modes within the structure and so they transfer
to the other side of the slab. The radiative source components
get negatively refracted with a small angle, which causes a
collimatedlike beam transfer within the structure. The com-
bined effect leads to a pseudofocusing17–20 with subwave-
length but not subdiffraction resolution. The operation of
such lens is restricted to the near or close far field �on the
order of a wavelength� zone. It was also demonstrated that
such metamaterials with hyperbolic dispersion relation in a
semicylindrical shape can lead to significant separation of
subdiffraction spaced sources21 or possess magnifying
properties.22–24 Furthermore, subdiffraction resolution with
one-dimensional metamaterials has been reported experi-
mentally at microwaves25,26 but the mechanism leading to
such phenomenon has not been analyzed.

Without a doubt, there have been a plethora of superlens-
ing works which utilize only part or some modifications of
Pendry’s perfect-lens mechanism in order to meet the man-
dates of practicality. In this work, we investigate whether it is
possible to observe the full perfect-lens phenomenon with
easier attainable anisotropic metamaterials. Typical metama-
terials that have been realized in visible frequencies are one
dimensional4,6 as their magnetic resonance is excited only for
a single-incident wave polarization and propagation direction
�anisotropic metamaterial27�. Furthermore, we explore
whether it is possible to achieve a lens with far-field opera-
tion while keeping its thickness small. Losses are ubiquitous
in practical metamaterials. Therefore, the possibility of a thin
lens would have tremendous impact in the realization of a
high-quality image. In the following, we present our pro-
posal of a thin anisotropic metamaterial slab which demon-
strates Pendry’s perfect-lens phenomenon on a plane. We be-
lieve our theoretical analysis will spur investigations for new
anisotropic metamaterial designs for superfocusing in the
visible spectrum.

In Sec. II, under lossless assumption for convenience, we
search theoretically for the specific necessary conditions,
which an anisotropic metamaterial must satisfy in order to
obtain Pendry’s perfect-lens phenomenon. In Sec. III, we ob-
tain with geometric optics a new lens formula for our pro-
posed structure. We discuss why this new lens formula sig-
nifies the possibility to obtain a thin yet far-field superlens.
In Sec. IV, we present numerical simulations which support
our theoretical claims and which manifest a performance for
our proposed lens on a par with the isotropic perfect-lens
analog. Finally, in Sec. V we present our conclusions.

II. SEARCHING FOR PERFECT-LENS PROPERTIES IN
ANISOTROPIC METAMATERIALS

Suppose we have an EM wave coming from an isotropic
right-handed medium �RHM� with permittivity �1�0 and
permeability �1�0, on a medium which is a lossless aniso-
tropic metamaterial with permittivity and permeability of the
form

�̄̄2 = ��2x 0 0

0 �2y 0

0 0 �2z
�, �̄̄2 = ��2x 0 0

0 �2y 0

0 0 �2z
� . �1�

We choose an incoming p-polarized wave and the xz
plane as the plane of incidence �see Fig. 1�. So the compo-
nents of the wave vector ki, electric field vector Ei, and mag-
netic field vector Hi in coordinate space would be �kix ,0 ,kiz�,
�Eix ,0 ,Eiz�, and �0,Hiy ,0� respectively, with i=1,2 corre-
sponding to materials 1 and 2.

The EM boundary conditions mandate the preservation of
the magnetic fields direction inside the anisotropic metama-
terial and in addition require that the parallel component of
the wave vector be conserved. Thus

k1x
2 = k2x

2 = kx
2 = k0

2�1�1 sin2 �1, �2�

with k0=� /c being the free-space wave number and �1 the
angle of incidence. Moreover, from Maxwell’s equations for
general electric and magnetic anisotropic media,28,29 and for
the specific illumination conditions given in Fig. 1, we obtain
the following dispersion relation for an EM wave propagat-
ing inside the anisotropic metamaterial:

kx
2

�2z�2y
+

k2z
2

�2x�2y
= k0

2. �3�

Inside the isotropic material we have the following familiar
expression for the dispersion relation:

kx
2 + k1z

2 = �1�1k0
2. �4�

These dispersion relations can be represented graphically
on the xz wave-vector plane as contours for different fixed
frequencies. These contours are generally known as equifre-
quency contours �EFCs�.11 Evidently, the EFCs in the isotro-
pic medium are circles. On the other hand, Eq. �3� implies
that the EFCs in the anisotropic metamaterial can be hyper-

isotropic regular
material 1

anisotropic
metamaterial 2

x

z

y

k1, S1
����

EH

FIG. 1. �Color online� A p-polarized EM wave �magnetic field
H perpendicular to the plane of incidence� comes from an isotropic
medium �material 1� at oblique incidence with angle �1 onto an
anisotropic metamaterial �material 2�. k1 and S1 are the wave vector
and Poynting vector of the incident beam, respectively.
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bolas or ellipses depending on the specific values of the per-
mittivities in the xz plane, �2x and �2z, and the permeability
in the y direction, �2y.

Let’s reiterate what are all the key ingredients of a
metamaterial to behave as a perfect lens according to Pend-
ry’s proposal: �i� the metamaterial must be reflectionless for
all angle of incidence so all energy of the source is trans-
ported through the slab. �ii� EM waves at oblique incidence
with angle �1, must refract negatively at the interface of the
metamaterial with an angle �2 so that tan �2 / tan �1 is inde-
pendent of the incident angle �1. This ensures that all beams
corresponding to the spatial spectral decomposition of a
pointlike source meet up at the same point inside the
metamaterial. �iii� Ramakrishna3 showed also that Pendry’s
perfect-lens slab possesses dispersionless SPPs, i.e., SPPs
which exist for any frequency and lateral wave vector. He
demonstrated that it is the coupling of these SPPs at each
side of the slab which enables the exponential growth of the
near-field components inside the lens material, which com-
pensates their decay outside the lens.

Let’s explore the requirements to meet the first condition,
namely, that of omnidirectional total transmission at the
metamaterial interface. The Fresnel amplitude reflectance
�r12� for p polarization at the interface is30,31

r12 =
�2xk1z − �1k2z

�2xk1z + �1k2z
. �5�

Therefore, for total transmission, i.e., r12=0, using Eqs. �3�
and �4� we get30

��1
2 − �2x�2z�sin2 �1 = �2z� �1

�1
�2y − �2x� , �6�

where �1 is the angle of incidence. Evidently, for omnidirec-
tional transmission Eq. �6� must be satisfied for every angle
�1,32 which leads to the following conditions:

�2x

�2y
=

�1

�1
, �2x�2z = �1

2. �7�

Thus, if Eq. �7� is satisfied the metamaterial would be per-
fectly matched with an isotropic medium with permittivity �1
and permeability �1.

We now proceed to search for the conditions imposed by
the second of the listed requirements. We stress that since we
deal with anisotropic metamaterial, it is rays of Poynting
vectors instead of phase rays that denote the direction of
propagation of energy. Therefore, the angles of energy propa-
gation in the RHM �medium 1�, �S1

��1, and the metamate-
rial �medium 2�, �S2

, would be

tan �S1
=

S1x

S1z
�8�

and

tan �S2
=

S2x

S2z
, �9�

respectively, with S1 and S2 being the incident and refracted
Poynting vector, respectively. We must ensure that R�

=tan �S2
/ tan �S1

is negative and independent of �S1
to satisfy

the second of Pendry’s perfect-lens conditions. From Eqs. �8�
and �9� along with the use of the omnireflectionless condition
r12=0 and the continuity of the normal component of the
displacement vector, D, we obtain that

R� =
tan �S2

tan �S1

=
�1

�2z
=

�2x

�1
. �10�

Note, that this simple derivation indicates that the omnire-
flectionless property simultaneously guarantees the indepen-
dence of R� on �1. But R� must also be negative, mandating
�2z and �2x to be negative.

Accordingly, to satisfy the conditions in Eq. �7� �2y must
also be negative, i.e.,

�2x � 0, �2z � 0, and �2y � 0. �11�

Put it differently, the metamaterial should have an elliptical
EFC with an effective metallic character in the x and z di-
rection, and the magnetic resonance excited with a magnetic
field along the y direction. Obviously, one-dimensional an-
isotropic metamaterials27 are sufficient to meet such require-
ments. We stress that our proposed medium is distinctively
different from metamaterials with a hyperbolic dispersion.
The latter are forward wave media which give only “pseudo-
focusing” as the far-field source component do not meet at
the same focusing point inside the material.17–20 Our pro-
posed medium has elliptical dispersion and is backward
wave medium.

One can easily confirm the backward nature of the pro-
posed metamaterial on the entire xz plane by checking the
product

S2 · k2 =
c

�

1

�2y
��k2 � E2�y	2, �12�

which evidently is negative. Note also that, EM propagation
inside the anisotropic metamaterial is extraordinary, with the
wave vector, and electric field vector not perpendicular to
each other. Therefore, the Poynting vector S2 is not antipar-
allel to the phase velocity k2, as in the case of isotropic
left-handed materials but at an obtuse angle with respect to
the wave vector.33

Using Eqs. �3� and �4� the relation for the incident and
refracted angle of the wave vector can be expressed as

tan �k2

tan �k1

=
�1

�2x
, �13�

where �k2
is the refracted angle of the wave vector and �k1

��S1
��1. Equation �13� implies that the ratio of the inci-

dent and refracted angle for the wave vector is independent
of the incident angle, as we have found also for the case of
the refraction of the energy flow.

Under the reflectionless perfect matching conditions �Eq.
�7�	, the dispersion relation inside the anisotropic metamate-
rial takes the simple form

kx
2 +

k2z
2

��2x
2 /�1

2�
= k0

2�1�1. �14�
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Indicatively, we plot the EFCs for the reflectionless aniso-
tropic metamaterial in Fig. 2 �ellipses�, along with the EFCs
in the isotropic right-handed medium �circles�. We feature
two cases, which capture all possibilities for any parameter
values simultaneously satisfying Eqs. �7� and �11�. One with

�2x
��1 shown in panel �a� and one with 
�2x
��1 shown in
panel �b� of Fig. 2. The conservation of the parallel compo-
nent of the wave vector expressed in Eq. �2� is depicted for
two different arbitrary incident angles with the vertical dot-
ted lines, and determines the refracted wave vectors �dashed
arrows�. Then the Poynting vectors are the normals at the
EFCs at this point and at an obtuse angle with the wave
vectors since the medium is backward. We show these as the
solid vectors. We note that for each angle of incidence there
would have been two distinct choices for a refracted wave
vector giving two distinct possibilities for the refracted
Poynting vector. We chose here to show only the possibility
that is causal, i.e., the one yielding an energy flow that points
away from the source. In the bottom panel we transfer the
incident and refracted directions of the energy flow in real
space. We confirm graphically what Eq. �10�, implies, that

two incident beams at arbitrary angles cross always at the
same point, P, inside the metamaterial. For comparison we
also show the crossing point, P�, if the beams were refracting
in the isotropic analog of the matched metamaterial. We see
that depending on whether 
�2x
 is smaller or larger than �1, P
can lie below or above P�.

Note that, as expression �14� implies and is graphically
seen in Fig. 2, the reflectionless conditions for the metama-
terial leads to an elliptical EFC with major axis �case �a�	 or
minor axis �case �b�	 along the interface and equal to the
radius of the circular EFC for the medium of incidence. This
means that any propagating waves hitting the interface be-
tween the right-handed medium and the reflectionless
metamaterial will remain a propagating wave inside the
metamaterial. Conversely, any evanescent wave hitting the
interface between the right-handed medium and the reflec-
tionless metamaterial will remain an evanescent wave inside
the metamaterial.

And that brings us to the third requirement of the perfect
lens, i.e., the evanescent waves inside the metamaterial
should be growing rather than decaying, and thus gain in

a) b)

1: isotropic RHM 1: isotropic RHM1: isotropic RHM
2: anisotropic LHM

1: isotropic RHM

2: anisotropic LHM

incident wavevector
refracted wavevector
refracted Poynting vector

x

refracted Poynting vector

Phase and energy raysO Phase and energy raysO

’����

z

isotropic RHM
anisotropic LHM

P

��s��’

��s��’

��s��

��s��

��s�� ��s��’

2
1isotropic RHM

anisotropic LHM 2
1

P’
energy rays

P’

P
��s��

��s��’

energy rays
P

FIG. 2. �Color online� Wave-vector diagram on the xz plane for refraction at the interface between an isotropic regular material, with
permittivity �1 and permeability �1, and an anisotropic backward metamaterial with 
�2x
��1 �case shown in �a�	 or 
�2x
��1 �case shown
in �b�	. The EFCs are shown as circular curves for the isotropic medium and as elliptical curves for the anisotropic metamaterial. Refraction
is shown for two angles of incidence �green vectors�. The dashed vertical lines are guide to the eyes for the conservation of parallel
component of wave vector. The application of all principles governing the refraction give the corresponding refracted wave vectors �dotted
blue arrows� and Poynting vectors �solid blue arrows�. We observe at the bottom panels the refracted energy rays corresponding to two
different arbitrary angles of incidence meet at the same point, P, inside the anisotropic metamaterial. For comparison point P� is shown
which designates the meeting point of two arbitrary beams refracting at the interface of an isotropic metamaterial analog with permittivity
−�1 and permeability −�1.
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magnitude while passing through a flat finite slab. This re-
quires the existence of a dispersionless SPP mode.3 SPPs for
the p-polarized case, if present, will be of electric
character.34,35 The condition to obtain a SPP mode3,35 be-
comes for the case of our reflectionless anisotropic metama-
terial

���2 − �1�1k0
2�

�1
= − ��2x

�1
����2 − �1�1k0

2�
�2x

, �15�

with �=kx being the lateral wave vector of the SPPs. It be-
comes self-evident from Eq. �15� that the SPP condition is
met for every �, k0. In other words, the omnireflectionless
anisotropic metamaterial also possesses dispersionless SPPs.
So, the evanescent components of the source will increase in
magnitude through a slab of thickness d by a factor M �Refs.
1 and 3� where

M = exp���2x

�1
����2 − �1�1k0

2�d� . �16�

To summarize, we found that our proposed anisotropic
metamaterial lens exhibits on a plane all features of the iso-
tropic perfect lens proposed by Pendry. To realize such lens
only a magnetic resonance along one direction is required.
This relaxes considerably the metamaterial design require-
ments to practically realize the perfect lens at the visible
frequency regime.

III. LENS FORMULA FOR THE ANISOTROPIC PERFECT
METAMATERIAL LENS

We have observed in Fig. 2 that any two beams incident at
arbitrary angles would meet up at the same point irrespective
of the incident angles. This in fact means that all far-field
components of a point source would focus at the same point
inside the metamaterial slab and then again at the same point

outside the lens, just like in the case of Pendry’s perfect lens.
These type of focusing phenomena allow the derivation of a
simple expression which relates the distance between the
source and the first interface, ds, with the distance between
the focus/image and the second interface, df, and the lens
slab thickness. Such expression is widely known as the lens
formula and is derived simply by geometric considerations
and ray tracing of the energy flow.

We show such ray tracing for Pendry’s perfect lens and
our proposed metamaterial lens in Figs. 3�a�–3�c�, respec-
tively. We have distinguished two cases for our proposed
metamaterial lens as we have also done in Fig. 2: one with
the permittivity component �2x smaller and the other greater
than the incoming medium permittivity, �1, respectively. For
Pendry’s perfect lens the refracted angle is equal to the inci-
dent angle. Geometry in the triangles formed by the refrac-

-6 -4 -2 0 2 4 6
6

4

2

0

-2

-4

-6

26.5 deg.
vph63.5 deg.z/

��

x/��

s

45 deg.

FIG. 4. �Color online� Negative refraction for a beam incident
from vacuum at 45° on a slab made of our proposed anisotropic
metamaterial with parameters �2x=�2y =−2+0.001i and �2z=−0.5
+0.001i. Note, the refraction angle of energy flow, S, shown with
the dark arrow, and the refraction of phase velocity, vph, shown with
the white arrow, are different.

a) Pendry’s perfect lens b) Anisotropic perfect lens c) Anisotropic perfect lens
|��2x|������ |��2x|������

ds��df��d ds��df��������x		������d ��d ds��df��������x		������d ��d
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FIG. 3. �Color online� Geometric ray tracing in Pendry’s perfect lens �panel �a�	, and in anisotropic planar perfect lenses with 
�2x

��1 �panel �b�	 or 
�2x
��1 �panel �c�	, respectively. Application of geometry in any of the triangles formed by following the refraction of
an arbitrary beam �see, e.g., shaded triangles� yields the lens formula in each case. We show these in the bottom of each respective panel.
Note, the arrows represent the energy rays indicating direction of energy velocity not phase velocity.
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tion path of an arbitrary beam �see shaded triangles� gives
that d1=ds, and, d2=df, where the distances d1 and d2 are
defined in the figure. Then this leads to ds+df =d, which is
nothing but the long-familiar perfect-lens formula.

We proceed now to derive an analogous formula for the
anisotropic metamaterial lens. From geometry in the shaded
triangles and using Eq. �10�, we get that

d1 = � �1

�2x
�ds �17�

and

d2 = � �1

�2x
�df , �18�

Equations �17� and �18� together yield

ds + df = ��2x

�1
�d . �19�

Equation �19� manifests a new lens formula for our aniso-
tropic planar perfect lens. If we use the lens formula, it be-
comes very easy to see that the magnification factor of the
evanescent source components given in Eq. �16�, exactly
compensates their decay outside, as they arrive at the focus.

The lens formula basically puts a restriction on the far-
field zone operation of the lens or the minimum slab thick-
ness for a certain zone of operation. In Pendry’s perfect lens,
we will not obtain a focusing effect if ds�d while in our
anisotropic lens we will not obtain a focusing effect if ds
� 
�2x /�1
d. This has serious implications. Depending on
whether the ratio 
�2x /�1
 is smaller �case of Fig. 3�b�	 or
greater �case of Fig. 3�c�	 than 1, we obtain a more restrictive
or a superior lens to Pendry’s lens as far as the far-field zone
of operation is concerned. The new lens formula suggests

a) ds = 4��, df = 6�� b) ds = 5��, df = 5�� c) ds = 6��, df = 4��
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FIG. 5. �Color online� Imaging of a point source through a slab of the anisotropic left-handed metamaterial lens, with parameters �2x

=�2y =−2+0.001i and �2z=−0.5+0.001i, which is perfectly matched to the surrounding vacuum. We consider different distances between the
source and the lens in the far-field zone, as given in each respective panel. The solid horizontal dark lines denote the lens limits while the
dotted white lines the source and image lines. We can observe a clear focus with location that follows the theoretically predicted lens
formula. In the bottom panels we show the respective time-averaged intensities of the magnetic field along the image lines. All FWHM are
subdiffraction attesting the superlensing performance of the perfectly matched anisotropic metamaterial.
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that by designing a proper anisotropic metamaterial we can
obtain a planar perfect lens, which operates in the far-field
zone but is much thinner than its isotropic analog. This is a
great advance, as realistic metamaterials are unavoidably
plagued with losses that degrade the image intensity.

In the following, we will focus only on the second type of
anisotropic metamaterial lens which can be much thinner
than the isotropic analog while maintaining a far-field zone
of operation. In our theoretical analysis thus far we discussed
the complete perfect-lens phenomenon which composes of
complete reconstruction of all, radiative and dark, compo-
nents of the source. However, in practical situation when the
near-field components decay substantially, they are at noise
level and cannot be compensated anymore by the metamate-
rial slab. This means that at the far-field zone, the focusing
effect practically emanates by the reconstruction of the radia-
tive components of the source only. In the subsequent section
we put our proposed lens to test with numerical simulation
and compare its performance with the isotropic perfect lens.

IV. NUMERICAL OBSERVATION OF SUPERFOCUSING
WITH THE ANISOTROPIC METAMATERIAL

LENS

To test the performance of our proposed anisotropic
metamaterial lens, we will consider a metamaterial with �2x
=�2y =−2+0.001i and �2z=−0.5+0.001i,36 which satisfy the
anisotropic perfect-lens conditions of Eqs. �7� and �11�, em-

bedded in vacuum. Realistic metamaterials are always dis-
persive. This means that in practical situations the perfect
anisotropic lens conditions can be met at one frequency only.
However, the same is true for Pendry’s perfect lens and for
many of the reported thus far superlenses. In the following
simulations �by COMSOL Multiphysics 3.3�, we do not as-
sume any specific frequency of the EM beam but we are
scaling both the lateral size and thickness of the metamaterial
slab with the free-space wavelength, 	.

Figure 4 shows the magnetic field of a beam hitting the
metamaterial at oblique incidence of 45°. We see that the EM
energy of the beam refracts negatively at 63.5° �dark solid
arrow� with the surface normal, which agrees excellent with
the predicted value of Eq. �10�. As we expected from theory,
the wave vector, and accordingly the phase velocity, will not
be aligned with the energy flow inside the metamaterial. We
depict the phase velocity with the white arrow, which we
determined by taking the normal to the phase fronts. The
magnitude of the angle between the phase velocity and the
surface normal is 26.5° and agrees also very well with the
predicted value of Eq. �13�.

We will use simulations to show that indeed our proposed
metamaterial exhibits a far-field superlensing phenomenon
subject to a geometric optics lens formula, as expressed in
Eq. �19�. We consider a metamaterial slab with thickness, d,
equal to 5	, and lateral width equal to 20	 and we place a
pointlike source at various distances, ds, from the first inter-
face. We plot the time-averaged magnetic field intensity in
the top panel of Fig. 5�a� for ds=4	, of Fig. 5�b� for ds
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FIG. 6. �Color online� Far-field superlensing with compact anisotropic metamaterial slabs �denoted with the black horizontal lines�
perfectly matched to vacuum. The bottom panels depict the time-averaged magnetic field intensities along the image lines �bottom white
dotted line in top panel�. In both �a� and �b� we have a source placed a wavelength far from the lens and an 0.36	 sized image formed one
wavelength from the lens, in agreement with the lens formula. In �a� we have considered a slab one wavelength thick made from an
anisotropic metamaterial with �2x=�2y =−2+0.001i and �2z=−0.5+0.001i. In �b� we have considered a slab half a wavelength thick, made
from an anisotropic metamaterial with �2x=�2y =−4+0.001i and �2z=−0.25+0.001i.
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=5	, and of Fig. 5�c� for ds=6	, respectively. We see in all
cases the clear formation of a focus at a certain distance from
the second interface, df. We measured df to be 6	, 5	, and
4	 in case �a�, �b�, and �c�, respectively. So, in all cases df

+ds=10	=2d, which agrees with the result predicted from
lens formula �19�, for our choice of parameters. In other
words, Fig. 5 attests the validity of the geometric lens for-
mula for our proposed anisotropic superlens.

We look now into the time-averaged intensity in the
source and image lines, seen as dashed white lines in the top
panel of Fig. 5, and depict these in the respective bottom
panels. We have estimated the full width at half maximum
�FWHM� in all the cases and show these inside the respec-
tive figures. We find image sizes with FWHM that are
smaller than half the free-space wavelength, 	 /2. In other
words, we have shown that the anisotropic superlens can
operate in the far-field and exhibit subdiffraction focusing
capacity.

We also observe in Fig. 5 that the image spot size for case
�b� is a little smaller than in cases �a� and �c�. If we place
now a point source at ds=8	 we find that we continue to see
focusing, which still obeys the lens formula, but the image
spot size becomes a little larger than 	 /2. If we place the
source more close at ds=2	, which leads at an image forma-
tion at ds=8	, we observe again a spot size that is a little
larger than 	 /2. To summarize, our superlens demonstrates
subdiffraction focusing in the far-field zone as long as both
image and source stay within 5	 from the lens. For larger
distances, the focusing still exists but its quality degrades.
We attribute this effect to the finite lateral size of the lens,37

as for larger source-lens distances the higher spatial frequen-
cies of the source would not hit the interface. As an evidence,
we have performed simulations for ds=5	 with different lat-
eral sizes of lens ls; the spot sizes �FWHM values� of image
become to 0.50	 and 0.62	 for ls being 15	 and 10	, respec-
tively.

A hindrance in the practical realization of metamaterial
superlenses is loss, which substantially diminishes the inten-
sity of the image. Therefore, it is important to also investi-
gate if it would be possible to obtain a superfocusing effect
with thin metamaterial slabs while remaining at least in the
close far-field zone on the order of the free-space wave-
length. We use now a thinner slab of the same material as in
Fig. 5 but with thickness d=	 and place a source at distance
ds=	. Our results, shown in Fig. 6�a�, indicate a clear image
with a FWHM equal to 0.36	, almost as small as the FWHM
of the intensity at the source line. Now, let’s make the mate-
rial parameters to be �2x=�2y =−4+0.001i and �2z=−0.25
+0.001i, which also meet Eqs. �7� and �11�. Then, the lens
formula becomes ds+df =4d, which allows us to shrink even
further the anisotropic metamaterial superlens. We examine
this possibility in Fig. 6�b� where we consider a slab made of
this material with thickness equal to half a wavelength. Re-
markably, even for such a thin lens and a source placed a
wavelength away, we observe again subdiffraction focusing
obeying the lens formula. This result gives great promise for
new interesting metamaterial designs that can lead to the
realization of thin planar subdiffraction lenses at visible fre-
quencies.

Finally, we would like to practically compare the perfor-
mance of our proposed superlens with that of Pendry’s per-
fect lens. We therefore present in Fig. 7 a simulation of the
superfocusing capacity of a perfect-lens slab, with thickness
equal to one vacuum wavelength and permittivity and per-
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FIG. 7. �Color online� Superfocusing with Pendry’s perfect lens
analog to the anisotropic metamaterial lens of Fig. 6�a�. The lens
has isotropic permittivity and permeability both equal to −1
+0.001i, and is one wavelength thick, just like in the case of Fig.
6�a�. When we place a source half a wavelength from the lens we
obtain an image size of 0.36	 �see panel �b�, showing magnetic
field intensity along image line	. This size is as large as in the case
of Fig. 6�a�. In panel �c� we see that, as we expected from the
perfect-lens formula, we do not get an image behind the lens if we
place the source one wavelength away from the lens. �We see the
beams meet up exactly on the second interface represented by the
bottom black horizontal line.�
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meability equal to −1. In Fig. 7�a� the source is placed half a
wavelength from the lens and we find �see Fig. 7�b�	 the
formation of an image with FWHM equal to 0.36	. This is
the same as the case of Fig. 6�a� for the anisotropic metama-
terial superlens. The reason we have put the source closer in
the perfect-lens slab is the following. If we had put the
source one wavelength from the lens as in Fig. 6�a�, the
focus is exactly on the second interface of the lens, and we
find no image behind the lens, as we can observe in Fig. 7�c�.

V. CONCLUSION

We have shown that a properly designed anisotropic
metamaterial can imitate Pendry’s perfect lens on a plane.
We have theoretically derived all the conditions that a
metamaterial has to obey in order to possess, at least on a
plane, all of the “key ingredients” of the perfect lens. We
have presented simulations that support our theoretical pre-
dictions for subdiffraction focusing. The latter obeys a new
geometric lens formula which allows for shrinkage of the
lens thickness. In particular, our numerical simulations dem-

onstrated superfocusing for a lens as thin as half a wave-
length, and with an image spot size comparable to that pro-
duced by the perfect lens. Our proposal considerably relaxes
the stringent mandates of the perfect lens for full isotropy so
that offers great flexibility in design and fabrication of super-
lenses. In addition, the compact superlens is found to be a
great promise for practical superlens at the visible according
to the state-of-the-art metamaterial fabrication in infrared
and optical regimes.
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