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Polaritonic cylinders as multifunctional metamaterials:
Single scattering and effective medium description
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Polaritonic materials, owing to a strong phonon-polariton resonance in the THz and far-infrared parts of
the electromagnetic spectrum, offer both high-index dielectric and metallic response. This complex response
makes them suitable candidates for the design of metamaterial-related phenomena and applications. Here we
show that one type of polaritonic-material-based structures that are particularly suitable for the achievement
of a wide range of metamaterial properties are systems of polaritonic rods. To study the interplay between the
material and the structural resonances in such systems, we employ as model systems rods of LiF and SiC and
we calculate first the scattering properties of a single rod, identifying and discussing the behavior of the different
resonances for different rod diameters. To analyze the response of ensembles of polaritonic rods, we employ
an effective medium approach based on the coherent potential approximation (CPA), which is shown to be
superior to the simple Maxwell-Garnett approximation for polaritonic and high-index dielectric metamaterials.
Calculating and analyzing the CPA effective parameters, we find that our systems exhibit a large variety of
interesting metamaterial properties, including hyperbolic dispersion, epsilon-near-zero and negative refractive
index response. This rich response, achievable in almost any system of polaritonic rods, is highly engineerable
by properly selecting the radius and the filling ratio of the rods, making polaritonic rod systems an ideal platform
for demonstration of multifunctional metamaterials.
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I. INTRODUCTION

The emergence of electromagnetic (EM) metamaterials
(MM), i.e., engineerable structured materials made of sub-
wavelength resonant building blocks (meta-atoms) with novel
and unique EM properties and response, made possible
the demonstration of novel and unconventional EM wave
phenomena, entailing possibilities to advance or even revo-
lutionize a great variety of applications related with EM wave
control, from telecommunications, to imaging, sensing, etc.
Particularly interesting categories of metamaterials that have
been designed and demonstrated so far include: (a) negative
effective permeability (mu-negative, MNG) and negative re-
fractive index metamaterials (NIMs, usually achievable by
combining negative effective permittivity and permeability)
[1,2]. NIMs are associated with many counter intuitive phe-
nomena, such as opposite phase and energy velocity, negative
refraction, etc., and unique potential in imaging and telecom-
munications applications. The first realizations of MNG and
NIM structures were obtained employing and properly struc-
turing metals [3], while, later, it was shown that the same
response can be achieved also by metamaterials made of
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high-index dielectrics [4,5], where the strong displacement
current undertakes the role that conduction current plays
in metals. (b) Hyperbolic metamaterials (HMMs) [6,7], i.e.,
anisotropic metamaterials showing hypebolic dispersion rela-
tion, own to the mixed positive and negative values of their
effective permittivity or permeability tensor components [8].
Such metamaterials, which are usually realized by properly
alternating metallic and dielectric layers or by employing
metallic rod systems, show great potential in imaging ap-
plications [9–11], as they can offer almost perfect imaging,
even with magnification (they can transform evanescent waves
to propagating), and in spontaneous emission enhancement
[12,13] (as they can offer very high density of EM states).
(c) Metamaterials with permittivity near zero (ENZ) [14–16];
such metamaterials, which can be realized by properly en-
gineering electrical permittivity resonances (e.g., by proper
structuring), are associated with peculiar phenomena and
possibilities, e.g., squeezing of EM waves in very narrow
channels, easy wavefront engineering, etc. Moreover, the huge
wavelength in such metamaterials makes them ideal hosts for
demonstration of subwavelength phenomena, as it makes all
the wave propagation and scattering features in to them to
fall in the extreme subwavelength region, almost for any type
of embedded scatterers. As we aim to show in this paper,
all the above metamaterial categories and their related novel
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FIG. 1. Real and imaginary parts of the dielectric function for
(a) LiF and (b) SiC calculated from Eq. (1) and using the data from
Table I. The gray areas indicate the frequency regions where the real
part of the corresponding dielectric function is negative, between
approximately ωT and ωL .

phenomena are achievable with properly engineered systems
of phonon-polariton materials (polaritonic systems) [17], in
particular, in systems made of polaritonic cylinders in a di-
electric host.

Phonon-polariton (polaritonic) materials [17–19] is a par-
ticularly interesting category of materials, combining both
metallic and dielectric response. They are polar crystals (e.g.,
NaCl) where the EM radiation excites lattice vibrations,
resonant in the region from THz to far- and mid-IR. The
coupling of the EM radiation with the lattice vibrations in
that region results to a resonant permittivity response of
Lorentz-type, i.e.,

ε(ω) = ε∞
ω2 − ω2

L + iω�

ω2 − ω2
T + iω�

(1)

where ε(ω) is the relative permittivity, the resonance fre-
quency ωT is the transverse optical phonon frequency, � is
the collision frequency, ωL is the longitudinal optical phonon
frequency, at which the dielectric function practically vanishes
(ωL is the analog of the bulk plasmon frequency of the metallic
case), and ε∞ stands for the asymptotic value of the relative
permittivity at high frequencies (much higher than ωL and
lower than the frequencies of the interband electronic exci-
tations).

The permittivity for two characteristic polaritonic materi-
als, namely, LiF and SiC, is plotted in Fig. 1. Examining the
permittivity forms of Fig. 1, one can easily realize the great
potential of the polaritonic materials in MM-related phenom-
ena and applications. Polaritonic materials offer regions of
(a) high positive permittivity and thus they can be used
for designing and demonstration of any kind of dielectric

TABLE I. Lorentz model material parameters for LiF and SiC.

Material ε∞ ωT /2π (THz) ωL/2π (THz) �/2π (THz)

LiF [32] 2.027 9.22 19.11 0.527
SiC [33] 6.7 23.79 29.05 0.143

metamaterials [20] and metasurfaces; (b) negative permit-
tivity, similar to that of metals in the optical region (with
smaller loss-tangent); thus they can provide all the properties
and possibilities that metallic metamaterials offer in optics,
e.g., plasmonic effects, hyperbolic metamaterial response; (c)
permittivity near zero, offering a convenient alternative to
complex metamaterial structures that are usually designed
to achieve epsilon-near-zero (ENZ) response; besides, they
can act as bulk ENZ hosts for demonstration of uncommon
scattering and propagation effects [21].

An additional merit of the polaritonic materials is that the
above mentioned rich response is exhibited in the THz and
far-IR region of the electromagnetic spectrum, a region partic-
ularly interesting for sensing, security, biological and medical
imaging, and thermal management, and also a region where
there is considerable lack of advanced optical components
(e.g., the THz gap). Finally, since many of the polaritonic
materials are semiconducting, their properties and response
can be highly tunable, e.g., by photoexcitation [17].

The potential of the polaritonic materials in MMs-related
applications makes important the development or adaptation
of not only advanced computational tools suitable for the
study of such materials, but also of simplified models able to
explore, identify, explain and even predict the rich variety of
phenomena and possibilities allowed by those materials. Such
a category of simplified models are the well known effective
medium models, describing metamaterials as homogeneous
(effective) media. Such models can offer a a simple physical
description of the response of the structures, revealing the
dominant factors determining this response and their depen-
dence on the structure parameters. Therefore they constitute
an invaluable tool not only for the physical understanding and
optimization of a given system but also, and more importantly,
for the design of systems with desired response. The most
well established today analytic effective medium model is the
Maxwell-Garnett (MG) [22] model, suitable for the designing
and description of structures in the quasistatic region. The MG
model has been extensively applied for either the prediction
or the analysis of the metamaterial response of many different
structures, especially of structures composed of metallic scat-
terers of spherical or cylindrical shape, in the low-frequency
limit, and specifically when khR � 1, ksR � 1, with kh, ks, the
wave number in the host and scattering material, respectively,
and R the scatterers radius. In the case of systems though
made of polaritonic scatterers, as well as in systems of high
permittivity dielectric scatterers [23,24], the high permittivity
of the scatterers (resulting to small associated wavelength)
leads to scattering resonances also in the long-wavelength
region (i.e., resonances in the region khR � 1) the influ-
ence of which, although crucial for the wave propagation,
can not be described by the simple quasistatic MG model.
As a result, important features of polaritonic or high-index
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dielectric systems, such as magnetic response by nonmagnetic
scatterers, cannot be reproduced. To overcome this problem,
extended MG models have been developed (valid in the region
khR � 1, ksR ≈ 1) in the three-dimensional case and have
been applied with great success in systems made of spherical
scatterers, either polaritonic or high-index dielectric [25,26].
For the case of cylindrical scatterers (2D) [27–29], though,
the most well-known suitable effective medium description is
a description based on field homogenization [27], which is
not straightforward to apply, while extended Maxwell-Garnett
approaches, to our knowledge, have not been developed and
applied in detail up now. In this paper, we show that a homog-
enization approach based on the well known in the solid state
physics community coherent potential approximation (CPA)
method [30,31] can be applied with great success in the case
of polaritonic rod systems, demonstrating a variety of novel
and unconvenional metamaterial phenomena in such systems.
We have to note here that various systems of polaritonic rods
in a host have been already studied, not only theoretically
but also experimentally, and interesting phenomena and pos-
sibilities have been predicted or demonstrated. It has been
shown that by properly designing the radii, heights and dis-
tances of the rods, one can achieve both negative permeability
and negative refractive index response [28]; moreover, hyper-
bolic response has been already theoretically demonstrated
[19,32,34], as well as exotic phenomena such as toroidal
dipolar response [35,36], epsilon-near-zero originated waveg-
uiding [37], and others. Finally, the possibility to relatively
easily obtain such systems by, e.g., eutectic self-organization
[32,38], laser micromachining [39], etc., makes their study
even more appealing and indispensable.

The aim of this paper is to analyze in detail the wave
propagation in systems of circular polaritonic rods (of infi-
nite height) in a dielectric host and to identify the different
interesting propagation regions and their associated character-
istics. Of particular interest is the investigation and analysis
of the effect of the combination of the material resonances
(such as those shown in Fig. 1) with the structure resonances,
dependent on the shape and size of the rods. To that extent,
the approaches and many of the results of the paper are not
applicable only in the case of phonon-polariton systems but
they can be applied in any system made of scatterers from
a resonant material (e.g., exciton-polariton systems, macro-
scopic MMs forming cylindrical scatterers, etc.); moreover,
the results can be transferred easily in the case of high-index
dielectric scatterers [40–44].

To analyze the response of the polaritonic rod systems
and to understand the effect of the interplay of material and
structure resonances, we start from calculation and analysis
of the single rod extinction and scattering cross section; then
we use the single rod results in the application of the CPA
approach [30,45,46], which is employed for the investigation
and analysis of the multirod systems. As model systems we
employ two different polaritonic rod systems: systems made
of LiF rods and systems made of SiC rods (see Fig. 1 for the
materials permittivity). Specifically, the paper is organized as
follows. In Sec. II, we introduce the methods used for the
calculation of the single rod extinction efficiencies and the
relations for the effective medium determination. In Sec. III,
we present the results of single rod scattering (Sec. III A)

and of the effective medium (Sec. III B) for our particular
systems and we identify the different attainable interesting
MM properties and capabilities. Comparison of our results
with full-wave simulations demonstrate and verify the validity
and merit of our approach in the study of polaritonic and high-
index dielectric MMs, validating also further the feasibility of
the interesting attainable effects predicted.

II. METHODS

Although the systems of interest in this work are systems
of polaritonic rods in air or in a dielectric host, the methods
discussed in this section are derived for a general system
of (identical) rods in a host, allowing any permittivity and
permeability for both the rod and the host material. This is
in order to achieve the widest possible applicability regime
of the derived formulas, allowing their use for prediction or
understanding of the properties of other potentially interesting
MM systems or categories.

A. Single scattering

We consider a single infinitely-long cylinder [47,48] with
radius R, composed of a material with relative electrical
permittivity εc and magnetic permeability μc embedded in
a host material with material parameters εh and μh. Along
the rest of the paper the subscripts h and c in any quantity
would refer to host and cylinder respectively. Moreover we
consider propagation in a plane perpendicular to the cylin-
der axis. Since the cylinder is infinitely-long and there is no
propagation component parallel to its axis, the problem is
two dimensional and, due to symmetry, it can be decoupled
into two separate polarizations, the transverse electric (TE)
polarization, with the electric field normal to the cylinder
axis, and the transverse magnetic (TM) polarization, with the
magnetic field normal to the cylinder axis, as seen in Fig. 2(a).
The fields can be expanded on the basis of cylindrical har-
monics inside and outside of the cylinder and the expansion
coefficients can be found by imposing the appropriate bound-
ary conditions on the cylinder’s surface [49]. Specifically,
the parallel to the cylinder axis component of the scattered
magnetic/electric field is proportional to

∑∞
m=−∞ aPmNem,kh

where Nem,kh = khHm(khρ) cos(mϕ)ẑ denotes the mth-order
cylindrical harmonic and the coefficient aPm denotes the
Mie scattering coefficient of the mth mode for polarization
P = {TE, TM}, which is given [47,48] by

aTE
m = ηhJm(kcR)J ′

m(khR) − ηcJm(khR)J ′
m(kcR)

ηcJ ′
m(kcR)Hm(khR) − ηhH ′

m(khR)Jm(kcR)
, (2)

aTM
m = ηhJ ′

m(kcR)Jm(khR) − ηcJ ′
m(khR)Jm(kcR)

ηcJm(kcR)H ′
m(khR) − ηhHm(khR)J ′

m(kcR)
, (3)

where kh = √
εhμhω/c is the wave number in the host ma-

terial, kc = √
εcμcω/c is the wave number in the cylinder,

and ηc = √
μc/εc, ηh = √

μh/εh denote the impedances of
the cylinder and the host material, respectively. Jm and Hm

stand for the Bessel and Hankel function (respectively) of the
first kind and order m, and J ′

m and H ′
m are their derivatives in

respect to their argument.
The dominant modes for each case can be identified from

the extinction efficiency, Qext, which is defined as the sum of
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FIG. 2. (a) An assembly of cylinders in a host medium (our
system of interest) and definitions of the TE and TM polarization and
the normal to the cylinders axes plane of incidence. (b) The unit cell
of the system of (a), along with its relevant geometry and material
parameters, i.e., electrical permittivity, ε, and magnetic permeability
μ. The subscripts h and c stand for the host and cylinder material,
respectively. (c) Geometry for the derivation of the effective electric
permittivity εeff and effective magnetic permeability μeff: a single
cylinder of radius R1 = R coated by a coating of thickness R2 − R1

made of the host material of the original system, embedded in the
effective medium. R2 is such as f = R2

1/R2
2, where f is the cylinder

filling ratio in the original system.

the electromagnetic field energy scattered and absorbed by the
cylinder, normalized to the incident energy and the geometric
cross section of the cylinder, 2R. In terms of the scattering
coefficients it can be written as1

QP
ext = − 2

|khR|Re
[

aP0 + 2
∞∑

m=1

aPm

]
(4)

and it can be decomposed into scattering efficiency, Qsc, and
absorption efficiency, Qabs, given by

QP
sc = 2

|khR|

[∣∣aP0∣∣2 + 2
∞∑

m=1

∣∣aPm∣∣2

]
, (5)

QP
abs = QP

ext − QP
sc. (6)

The resonances in the extinction spectra of the cylinders (also
known as Mie resonances [50]) can be classified by their
polarization P and an integer m associated with the corre-
sponding cylindrical harmonic. The resonance frequencies or

1In literature [23,47], there is no minus sign in the extinction
efficiency; it is due to the definition of the coefficients am with an
extra minus sign (see Appendix A).

eigenfrequencies of the system can be calculated by setting
the denominators of the scattering coefficients for each polar-
ization, Eq. (2) for TE and Eq. (3) for TM, equal to zero:

1

ηc

Jm(kcR)

J ′
m(kcR)

= 1

ηh

Hm(khR)

H ′
m(khR)

, (7)

ηc
Jm(kcR)

J ′
m(kcR)

= ηh
Hm(khR)

H ′
m(khR)

. (8)

In the limit khR � 1 (where a system of cylinders behaves
as a metamaterial), it is sufficient to consider only the first two
fundamental modes, i.e., m = 0 and m = 1, since the contri-
bution of higher order modes is insignificant. In the discussion
below, these modes are identified as TE0, TE1, TM0, and
TM1 (for the fields distribution of those modes see Fig. 3).
Using recurrence and other relations of Bessel functions [51]
[e.g., J ′

0(x) = −J1(x) and H ′
0(x) = −H1(x)], we see that for

μh = μc the eigenfrequency relations of the TE0 and the TM1

modes are identical; therefore, TE0 and the TM1 modes are
degenerate. To explore the eigenfrequency relations of the
above modes in the limits of small size parameters khR and
kcR, we use the limiting expressions of Bessel functions [51]
listed in Appendix A. For the TM1 mode, in the limit of
khR � 1, we have

ηc
J1(kcR)

J ′
1(kcR)

= −ηhkhR = −μh
ω

c
R. (9)

In the quasistatic limit of both khR � 1 and kcR � 1, the TM1

resonance condition becomes

μc = −μh. (10)

Thus the TM1 mode does not present resonances in the qua-
sistatic limit, except in the case of a magnetic host or cylinder.
For the TE0 in the limit of khR � 1, we have

1

ηc

J0(kcR)

J ′
0(kcR)

= εh

[
ln

(
khR

2

)
+ γ − i

π

2

]
ω

c
R, (11)

where γ is Euler’s constant. In the quasistatic limit of both
khR � 1 and kcR � 1, the resonance condition has solutions
only if 1/μc → 0 in this limit.

In an analogous way, one can obtain limiting expressions
also for the TM0 mode; in the limit of khR � 1,

ηc
J0(kcR)

J ′
0(kcR)

= μh

[
ln

(
khR

2

)
+ γ − i

π

2

]
ω

c
R. (12)

In the quasistatic limit, of both khR � 1 and kcR � 1, we
can have resonance in the case that 1/εc → 0, a condition
that can be fulfilled in the case of a polaritonic cylinder, with
the resonance frequency to coincide with the phonon polariton
resonance frequency of the cylinder material.

Finally, for the TE1 mode in the limit of khR � 1,
we obtain

1

ηc

J1(kcR)

J ′
1(kcR)

= − 1

ηh
khR = −εh

ω

c
R. (13)

In the limit khR � 1 and kcR � 1, the resonance condition
becomes

εc = −εh. (14)
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FIG. 3. Extinction efficiency of a LiF cylinder in air [(a) and (b)] and in a dielectric with εh = 2 [(c) and (d)] for TM (left column) and TE
(right column) polarizations. The legend shows the cylinder radius. The shaded areas correspond to the frequency region where the dielectric
function of LiF is negative. (e) Electric (green color) and magnetic (blue color) field distributions for the TM0, TM1, TE0, and TE1 modes.

Equation (14), which can be fulfilled in the case of a polari-
tonic cylinder (owing to its metal-like behavior in frequencies
above the phonon-polariton resonance frequency), is identical
to the resonance condition of a surface plasmon polariton
(SPP) mode in a dielectric-metal planar interface [52].

B. Effective medium

We now calculate the components of the effective
medium permittivity and permeability tensors for a uniaxial
anisotropic system of infinitely long parallel circular cylinders
employing a coherent potential approximation (CPA) based
approach as developed by Wu et al. [30]. As was already
mentioned, unlike the quasistatic Maxwell-Garnett approxi-
mation [22], which is valid only when all khR, kcR, and keffR
are much less than unity, the CPA approach allows application
in higher frequency regions, where particle resonances occur
(and thus interesting metamaterial effects), allowing treatment
of metamaterials made of high-index dielectric or polaritonic
scatterers. A considerable advantage of CPA over other suit-
able effective medium approaches (like the field-averaging
method [27,34]) is that the effective parameters are given in
a closed form as we will see below. Moreover, the effective
parameters do not depend on the specific lattice-type of the
system to be described, as it would be in the case of extended
Maxwell-Garnett approaches [53] applied in two-dimensional
systems [54].

Regarding our systems, as an implication of symmetry, for
a proper choice of axes, that is the cylinders are oriented along
the z axis, the effective electric permittivity and magnetic
permeability must be uniaxial, i.e., diagonal tensors with only
two free parameters. In dyadic form they can be written as
εeff = ε⊥

eff(x̂x̂ + ŷŷ) + ε
‖
effẑẑ and μeff = μ⊥

eff(x̂x̂ + ŷŷ) + μ
‖
effẑẑ

respectively, where x̂, ŷ, and ẑ are the unit vectors along the
axes, and the symbols ‖ and ⊥ denote that the corresponding
field (electric for ε and magnetic for μ) is parallel and perpen-
dicular (respectively) to the cylinders axis.

In order to derive semianalytical expressions for the com-
ponents of the effective parameters in the framework of CPA,
we should require vanishing of the scattering between ef-
fective and actual medium. To apply this requirement, we
consider the scattering configuration shown in Fig. 2(c),
where the actual medium is represented by a coated cylindri-
cal inclusion (of infinite height) with core of radius R1 = R
and material the same as the original cylinders, and coating
of thickness R2 − R1 made of the host material of the original
system; the coated inclusion is embedded in the homogeneous
effective medium with electric permittivity εeff and magnetic
permeability μeff. The radius R2 of the coated inclusion is
defined by the filling ratio, f , of the cylinders in the original
system, as f = R2

1/R2
2. In order for the effective medium of

Fig. 2(c) to be the one accurately describing our inhomoge-
neous system CPA requires the scattering cross section from
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the embedded into the effective medium coated cylinder to
be identically zero. Hence, all the scattering coefficients of
the coated inclusion must be set equal to zero, which, after
some algebraic manipulations (see Appendix A), leads to the
following condition:

aPm(R1; c, h) = aPm(R2; eff, h). (15)

In Eq. (15), aPm(R; A, B) stands for the mth-order scatter-
ing coefficient for a cylinder with radius R made of a
material A immersed in a host made of material B for po-
larization P. Equation (15) defines an infinite system of
nonlinear equations which has to be solved self-consistently
for the components εeff and μeff to be obtained. However,
in the region of khR < 1, which is the region of interest for
metamaterials, we can limit ourselves only to the first two
modes per polarization, m = 0 and m = 1; then, assuming
also that keffR2 � 1 (keff is the wave-vector norm in the
effective medium), we can derive semianalytical relations
for all the components of the effective material tensors (see
Appendix A), which read as

ε
‖
eff = − 2εh

khR2

[
J ′

0(khR2) + H ′
0(khR2)aTM

0

J0(khR2) + H0(khR2)aTM
0

]
, (16)

μ⊥
eff = μh

khR2

[
J1(khR2) + H1(khR2)aTM

1

J ′
1(khR2) + H ′

1(khR2)aTM
1

]
, (17)

μ
‖
eff = − 2μh

khR2

[
J ′

0(khR2) + H ′
0(khR2)aTE

0

J0(khR2) + H0(khR2)aTE
0

]
, (18)

ε⊥
eff = εh

khR2

[
J1(khR2) + H1(khR2)aTE

1

J ′
1(khR2) + H ′

1(khR2)aTE
1

]
, (19)

where aPm = aPm(R1; c, h). As can be seen in Eqs. (16)–(19),
each one of the effective parameters is related with a particular
mode in the single scattering cross section. This connection,
justifying the characterization of the modes as electric and
magnetic, can be understood also physically by observing the
field distribution corresponding to those modes, see Fig. 5 and
Sec. III A.

Equations (16)–(19) under certain conditions can lead to
resonances in the effective parameters, associated with inter-
esting propagating and scattering effects for the composite
structure as we will discuss in the next section. For khR2 � 1
(thus also khR1 � 1), the resonance conditions/frequencies
(obtained by setting the denominators equal to zero and em-
ploying limiting expressions for the Bessel functions, see
Appendix A) are approximated as follows.

For ε
‖
eff (related to TM0 mode),

ηc
J0(kcR1)

J ′
0(kcR1)

= μh ln(R2/R1)
ω

c
R1 = −1

2
μh ln( f )

ω

c
R1. (20)

For μ⊥
eff (related to TM1 mode),

ηc
J1(kcR1)

J ′
1(kcR1)

= f + 1

f − 1
μh

ω

c
R1. (21)

For μ
‖
eff (related to TE0 mode),

1

ηc

J0(kcR1)

J ′
0(kcR1)

= εh ln(R2/R1)
ω

c
R1 = −1

2
εh ln( f )

ω

c
R1. (22)

FIG. 4. Extinction efficiency of a SiC cylinder (of radius 0.1,
0.5, and 0.8 μm) in air for (a) TM and (b) TE polarizations. The
shaded areas correspond to the frequency region where the dielectric
function of SiC is negative.

For ε⊥
eff (related to TE1 mode),

1

ηc

J1(kcR1)

J ′
1(kcR1)

= f + 1

f − 1
εh

ω

c
R1. (23)

One can see that the above relations (20)–(23) are very similar
with the corresponding conditions for single scattering res-
onances discussed in the previous subsection. In particular,
Eqs. (21) and (23) for low cylinder filling ratio f lead to res-
onance frequencies very close to those of the corresponding
TM1 and TE1, respectively, single cylinder resonances, see
Eqs. (9) and (13), respectively.

Finally, in the quasistatic limit (i.e. for a khR2 � 1, khR1 �
1 and kcR1 � 1), Eqs. (16)–(19) reduce to the well-known
MG formulas:

ε
‖
eff = f εc + (1 − f )εh, (24)

μ
‖
eff = f μc + (1 − f )μh, (25)

ε⊥
eff = εh

(1 + f )εc + (1 − f )εh

(1 − f )εc + (1 + f )εh
, (26)

μ⊥
eff = μh

(1 + f )μc + (1 − f )μh

(1 − f )μc + (1 + f )μh
. (27)

III. RESULTS AND DISCUSSION

A. Single scattering

We begin our analysis by calculating the extinction effi-
ciency of a LiF cylinder in air (εh = 1, μh = 1) and in a host
with εh = 2, μh = 1, and for a SiC cylinder in air, for both
TM and TE polarizations and various radii. The dielectric
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FIG. 5. (Top) Resonance frequencies and absorption over scattering efficiency Qabs/Qsc at the resonance frequency of the TM0 (rotated
triangles), TE0/TM1 (circles), and the TE1 (upright triangles) modes as function of the radius for a (a) LiF and a (b) SiC cylinder in air (εh = 1).
The dashed line shows the quasi-static resonance condition for the TE1 εc(ω) = −εh, and the shaded area corresponds to the frequency region
where the dielectric functions of LiF and SiC are negative. (Bottom) Quality factor −Re(ωres )/(2Im(ωres )) for the modes of a (c) LiF and
(d) SiC cylinder in air.

functions of both LiF and SiC, which are shown in Fig. 1, are
calculated using Eq. (1) with parameters tabulated in Table I.
The extinction efficiency results for the LiF and the SiC cylin-
ders are shown in Figs. 3 and 4, respectively. It is apparent
that for each polarization there are two dominant resonances
in the low-frequency extinction spectra which originate from
the m = 0 and m = 1 modes. Using the notation defined in
Sec. II A we have the TE0, TE1, TM0 and TM1 modes, where
the TE0 and TM1 modes resonate at the same frequency, as
was also discussed in Sec. II A. Illustrations of the fields for
each of these four modes are shown in Fig. 3(c). From the
field illustrations one can characterize the modes as electric
in nature (i.e., associated with strong induced electric field
in the direction of the incoming field), as TM0 and TE1,
and magnetic in nature (i.e., with strong induced magnetic
field in the direction of the incoming magnetic field), as TE0

and TM1.
As can be observed in both Figs. 3 and 4, only the TE1

mode falls in the negative permittivity region of the polaritonic
materials (shaded region in the plots) and is similar in na-
ture to the localized surface plasmon resonance (LSPR) [55]
sustained by metallic particles in the visible part of the spec-
trum. For very small radii, the mode frequency approaches the
quasistatic limit (khR � 1 and kcR � 1) value, where εh =
−εc(ωres). This relation suggests that the resonance frequency
of the TE1 mode is affected greatly by the environment of
the cylindrical particle. To the contrary, there is no significant
dependence of the resonance frequencies of the TE0, TM1,
and TM0 modes on the host parameters (only the values of
Qext change). This result can be partially explained by the fact
that we are in the high-index dielectric regime for the cylinder
and that the electric fields for these modes are concentrated

in or at the surface of the cylinder as related field simulations
show. On the other hand this is not true for the TE1 mode,
where the electric field is dipole-like and highly extends into
the dielectric.

We turn now our focus on the dependence of resonances on
the radius of the polaritonic cylinder. In Fig. 5, we plot the res-
onance frequencies for a LiF [panel (a)] and a SiC [panel (b)]
cylinder in air as a function of cylinder radius, indicating also
the ratio of absorption over scattering Qabs/Qsc of each mode
(the resonance frequencies were obtained by solving Eqs. (7)
and (8) numerically for m = 0 and m = 1). For small radii,
only the modes of electric nature appear; i.e., TM0 and TE1.
For TM polarization, where the incident electric field (parallel
to the cylinder) does not experience any ”boundaries,” the
only factor affecting the induced polarization is the polarizabi-
ity of the bulk material; the resulting mode is the spherically
symmetric TM0 mode, with resonance for small radius values
almost at the bulk material resonance frequency, ωT . The
resonance frequency moves to lower values as the radius of
the cylinder increases and the wavelength inside the cylinder
becomes comparable to the radius. This departure of TM0

resonance frequency from ωT is faster for the SiC cylinder due
to the higher permittivity values and the associated smaller
wavelength inside the cylinder. In both TE1 and TM0 modes,
absorption dominates extinction for small radii, as can be
concluded from Fig. 5(a), but for larger radii scattering takes
over, as happens also in the case of a metallic cylinder. In the
SiC case [Fig. 5(b)] though, the dominance of the scattering
over absorption for the TM0 mode occurs in very small radius
values [even smaller than 0.1 μm, which is the threshold value
of Fig. 5(b)], and the absorption cross-section for R larger than
0.2 μm is practically negligible. This can be explained by the
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FIG. 6. Real (top) and imaginary (bottom) parts of the parallel and perpendicular components of the relative effective permittivity, εeff

(first and second columns), and permeability, μeff (third and fourth columns), for LiF cylinders with filling ratio 30% in air, for different radii,
R, (mentioned in the legends) using the CPA (lines) and the Maxwell-Garnett approximation (circles). The shaded areas correspond to the
frequency region where the dielectric function of LiF is negative.

quicker departure of the TM0 mode from ωT resonance where
the losses of SiC are quite high, combined with the much
higher quality factor of SiC compared to LiF (note that for
SiC �/ωT ≈ 0.006 while for LiF �/ωT ≈ 0.057).

The TE0 and TM1 modes, appearing for radius values
larger than 0.5 μm for LiF and 0.4 μm for SiC, appear
also just below optical phonon frequency ωT . Their reso-
nance frequency changes only slightly with the increase of
the radius. Moreover, absorption dominates over scattering for
small radii and as the radius increases scattering starts to take
over. For the case of LiF this happens for radii much larger
than those studied here. This is probably not-surprising taking
into account the weak extinction cross-section of the TE0 and
TM1 modes and the fact that their resonance frequency is
(and remains) relatively close to the resonance frequency ωT

where the material losses are quite high. Indicative plots of
LiF and SiC absorption and scattering efficiencies for different
cylinder radii are presented in Appendix B.

Calculating the quality factor, Q, of the different modes
dominating the long wavelength extinction response of LiF
and SiC cylinders, with Q = −Re[ωres]/(2Im[ωres]), we ob-
tain the result shown in Fig. 5(c) for LiF and Fig. 5(d) for SiC.
We observe that for small cylinder radii the quality factor of
the TE1 mode, which is sensitive to the environment and thus
suitable for sensing applications, gets values higher than 20
for LiF and higher than 100 for SiC cylinders. Such values
are higher than the corresponding ones of plasmonic anten-
nas (of the same size parameter, khR) in the visible [56–58],
indicating the suitability of polaritonic rods in sensing appli-
cations in the THz and IR part of the EM spectrum. Regarding
the “magnetic” modes TE0/TM1, for LiF their quality factor
changes very slowly with increasing radius and retains values

close to 18 (17.59 for R = 0.5 μm to 17.12 for R = 1.6 μm).
For SiC, their quality factor decrease with increasing radius
occurs much more quickly due to the much lower �/ωT and
the quicker departure of the resonance frequency from the
highly lossy region around ωT .

B. Effective medium

We can now turn our attention to the calculation of effective
medium material parameters εeff and μeff for systems com-
prised of polaritonic cylinders in a host. In Fig. 6, we plot all
the components of the effective permittivity and permeability
tensors, both real and imaginary parts, for LiF cylinders in
air for the same set of radii discussed in Sec. II A for single
scattering, i.e., 0.3, 1, and 1.5 μm, and LiF filling ratio 30%.
We also plot the effective permittivities in the quasistatic limit
(khR � 1 and kcR � 1) using the Maxwell-Garnett approxi-
mation [see Eq. (24)] [22]. Since μh = μc = 1, the effective
magnetic permeabilities in the quasistatic limit are both equal
to unity. As one can see in Fig. 6, the effective permittivi-
ties and permeabilities exhibit Lorentzian-type resonances at
frequencies close to their associated mode eigenfrequencies
of a single cylinder, shown in Fig. 5. In a similar fashion to
the single-cylinder eigenmodes, the resonances in the effec-
tive parameters move to lower frequencies and the maximum
values of of εeff and μeff increase for larger radii.

In particular, the so called electric modes, TM0, TE1,
lead to effective permittivity resonances, while the magnetic
modes, TM1, TE0, to effective permeability resonances. Since
the magnetic modes do not appear/resonate in the quasistatic
regime (i.e., for small cylinder radii) the permeability reso-
nances are not present in that regime, in agreement also with
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FIG. 7. Normal incidence, TM reflection spectra for a slab of
LiF cylinders with radius R = 1.3 μm and filling ratio f = 6.95%
in KCl host in a square arrangement. The reflection is calculated
by the commercial finite element method electromagnetic solver
COMSOL MULTIPHYSICS, considering a computational system of 7
unit cell thickness (along propagation direction). The full wave re-
flection results (black line and dots) are compared with results for a
homogeneous effective medium of the same thickness as the actual
system and effective parameters obtained through CPA (red line)
and Maxwell-Garnett approximation (green line). KCl was modelled
using Eq. (1) with parameters ε∞ = 2.045, ωT /2π = 4.21 THz,
ωL/2π = 6.196 THz, and �/2π = 0.156 THz [32].

the MG formulation. In fact the accurate description and re-
production of magnetic effects in nonmagnetic composites is
one of the great merits of CPA regarding metamaterial effects
and capabilities.

Regarding the effective permittivity of Fig. 6, while for
small cylinder radius the CPA results coincide with the (size
independent) Maxwell-Garnett results, as we increase the
cylinder radius, exciting more resonances and thus more rich
electromagnetic response, the Maxwell-Garnett is not able to
describe the response of the inhomogenous medium and thus
to reproduce the achievable metamaterial properties.

A demonstration of this inability and the accuracy and
success of our CPA approach is given in Fig. 7, where we
compare the Maxwell-Garnett and the CPA results with full
wave simulations for a polaritonic system that has been real-
ized also experimentally [32]; that is a system of LiF cylinders
(of radius 1.3 μm and filling ratio 6.95%) in a KCl host.
The results of Fig. 8, as well as analogous results for systems
with smaller or larger cylinder radii, clearly demonstrate that
CPA can describe with satisfactory accuracy the electromag-
netic response of structures with larger-size cylinders (i.e., of
kcR ≈ 1), polaritonic or high-index-dielectric.

We have to add here that the observed in Fig. 7 slight
discrepancy between CPA and full-wave simulation results at
around 8 THz is due to the fact that in this region kTM

eff R2 ≈ 3,
which is beyond the regime of validity of CPA—note that the
semi-analytical CPA formulas have been obtained under the
condition keffR2 < 1. Besides that condition, which is specific
to the current implementation of the CPA, in general, for for
higher frequencies, such as khR2 > 1, where the structures
are not subwavelength anymore and higher order modes (not
considered here) along with lattice effects start to become im-
portant, the CPA (such as almost all the homogeneous medium
descriptions) becomes less and less accurate.

FIG. 8. Real (top) and imaginary (bottom) parts of the parallel and perpendicular components of the relative effective permittivity ε (first
and second columns), and permeability, μ (third and fourth columns), for SiC cylinders with filling ratio 30% in air, for different radii, R
(mentioned in the legends), using the CPA (lines) and the Maxwell-Garnett approximation (circles). The shaded areas correspond to the
frequency region where the dielectric function of SiC is negative.
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Coming back to our model systems, in Fig. 8, we plot the
components of the relative effective permittivity and perme-
ability tensors for SiC cylinders in air for radii 0.1, 0.5, and
0.8 μm (the same ones discussed in connection with Fig. 4).
The filling fraction also here is chosen to be equal to 30%.
As in the case of LiF in air, we observe also here resonant
permittivity and permeability, closely connected with single
cylinder resonances, as discussed in the case of Fig. 6. A
significant difference here is the stronger magnetic response
leading to even negative permeability values; this is a result
of the higher permittivity values of SiC compared to LiF
[compare the permittivity values of Figs. 1(a) and 1(b)], and
thus of the stronger displacement current.

A closer examination of Figs. 6 and 8 indicates that there
is a variety of interesting and useful metamaterial properties
achievable by our polaritonic rod systems. These include (a)
engineerable permittivity response comprising of both high
positive values, negative values, and near-zero values; (b)
engineerable permeability, including negative permeability
values; (c) double-negative response, i.e., permittivity and
permeability both negative, resulting to negative refractive
index response; (d) hyperbolic response. Below we comment
in more detail on the above properties and response, gener-
alizing to any polaritonic-rod-based composite. Moreover, in
Appendix C, we present also plots of the effective permittivity
and permeability components shown in Figs. 6 and 8 in a
smaller vertical-axis range, to reveal and highlight the values
of the effective components away from the resonances.

1. Engineerable permittivity response.

Although in the bulk polaritonic materials we already have
a rich permittivity response, including both positive, negative
and near-zero values, structuring the polaritonic material in
the form of cylinders we have the potential to engineer the
permittivity values, reaching negative values even below the
resonance of the corresponding bulk material [compare, e.g.,
Figs. 1(a) and 6(a) or Figs. 1(b) and 8(a)], reaching desired
negative (or positive) values different than those of the bulk
material as, e.g., to, adjust the impedance of the system with
that of its surrounding medium, combining properly the real
and imaginary parts of the effective ε as, e.g., to reduce
losses in the region of operation, moving the epsilon-near-zero
response in the desired frequency range, etc. The effective
permittivity values can be engineered by changing either the
cylinders radii or the cylinders filling ratio.

2. Engineerable permeability response.

As Fig. 8 shows, in properly designed systems of po-
laritonic rods, owing to the large permittivity values of the
polaritonic materials, we have the ability to achieve resonant
permeability associated with negative values for both TE and
TM polarization if the underlying single-cylinder resonance is
strong enough. The negative permeability response is favored
by polaritonic materials of high ε (compare the LiF with the
SiC case), by cylinders of larger radii (as kcR ≈ 1) and by
large cylinder filling ratio. As in the permittivity case, the
effective permeability values can be engineered by changing
either the cylinders radii or the cylinders filling ratio.

3. Double negative response.

Regarding the double negative response resulting to neg-
ative refractive index, in the SiC system shown in Fig. 8 we
see that such a response is achievable (for TM polarization
and normal incidence) for both R = 0.5 and 0.8 μm. (For
R = 0.8 μm ε

‖
eff and μ⊥

eff are both negative between 22.2 and
22.8 THz.) Adjusting the cylinder radii or the filling ratio,
one can engineer this response, engineering thus the effective
impedance of the system and the effective refractive index.
Having the potential to engineer separately refractive index
and impedance offers a valuable tool for wave propagation
manipulation, as it allows perfect coupling to the surrounding
medium or perfect transmission combined with desired phase
propagation features.

4. Hyperbolic response.

Taking into account the dispersion relations for TM and TE
modes [59], i.e.,

TM :
k2
⊥

μ⊥
effε

‖
eff

+ k2
‖

μ⊥
effε

⊥
eff

=
(ω

c

)2
, (28)

TE :
k2
⊥

ε⊥
effμ

‖
eff

+ k2
‖

ε⊥
effμ

⊥
eff

=
(ω

c

)2
(29)

(where k⊥ and k‖ refer to the perpendicular and parallel to
the cylinders axes wave-vector components), along with the
results of Figs. 6 and 8, one can see that the condition for
hyperbolic response for the TM modes for μ⊥

eff > 0, i.e.,
ε

‖
eff ε

⊥
eff < 0, can be easily achieved for both the LiF and

SiC systems in two different frequency regions even in the
quasistatic limit. In the first region, around ωT and near the
TM0 resonance frequency, the out-of-plane components ε

‖
eff

are negative for all radii (at least for R > 0.1 μm) while the
in-plane components ε⊥

eff are positive; the medium in this case
is called hyperbolic metamaterial type I (HMM I). The second
region where hyperbolic response due to different signs of
the εeff components is feasible is close to the TE1 resonance,
where ε⊥

eff are negative and ε
‖
eff positive. The medium in this

case is called hyperbolic metamaterial type II (HMM II) and
it is considered more suitable (than HMM I) for the so-
called dark field superlensing [9] (requiring filtering out of the
small wave numbers) and for the achievement of high Purcell
factors [34].

The hyperbolic-response-related merit of our systems (and
of many polaritonic systems) is not restricted though only to
TM polarization and the above mentioned features. There ad-
ditional and important features stemming from the possibility
of also negative μeff besides negative εeff, which exists in our
SiC systems.

As can be observed in Figs. 8 and 13 (in Appendix C),
for R = 0.8 μm, μ⊥

eff is negative in the region 22.2–22.8 THz
and μ

‖
eff is negative at 22.55–22.8 THz; since in these regions

ε
‖
eff is also negative while ε⊥

eff positive, taking into account
the relations (28) and (29), one can see that in the region
22.2–22.54 THz there is hyperbolic response (HMM II) also
for the TE polarization, own to the opposite sign of the two
μeff components (μ⊥

eff < 0, μ
‖
eff > 0. Moreover, in the region,

22.2–22.8 THz in which for TM polarization and normal
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FIG. 9. Optical phase diagrams for the TM modes for LiF (top row) and SiC (bottom row) cylinders in air for different radii R of the
cylinders. The color marks the different attainable metamaterial-related responses of the systems: dielectric (white color): both ε

‖
eff > 0, ε⊥

eff >

0, μ‖
eff > 0, μ⊥

eff > 0, HMM type I (red): ε
‖
eff < 0, ε⊥

eff > 0, HMM type II (green): ε
‖
eff > 0, ε⊥

eff < 0, metallic (blue): ε
‖
eff < 0, ε⊥

eff < 0, and DNG
(yellow): ε

‖
eff < 0, μ⊥

eff < 0.

incidence we achieve double negative response, one can see
that for off-normal incidence the dispersion of the system
is hyperbolic (ε‖

eff < 0, μ⊥
eff < 0, ε⊥

eff > 0) but with negative
phase advance in the plane perpendicular to the cylinders.
Such a peculiar feature may be associated with uncommon
and still unexplored propagation characteristics and wave
control possibilities. Moreover, the possibility for hyperbolic
response own also to negative permeability components gives
a great flexibility for dispersion engineering for arbitrary po-
larization (and for unpolarized light), and, besides, it gives the
ability to highly control also the system impedance, issues
crucial for both superlensing applications and applications
related to thermal emission and radiation control [60].

Optical phase diagrams: filling ratio influence

To illustrate further and more clearly the different attain-
able properties and capabilities of systems of polaritonic rods,
we investigate for our two systems the frequency regions
where the above mentioned interesting MM responses occur
as we change the rods filling ratio, for the TM modes, based
on Eq. (28). In Fig. 9, we plot for both systems (i.e. LiF
and SiC) the optical phase diagrams, showing the different
interesting optical response regions as a function of filling
ratio and frequency, for various radii. There the different re-
gions are marked with different colors: With red the HMM
I region, with green the HMM II, with yellow the DNG
region (achievable for TM polarization - normal incident)
and with blue the fully metallic region (ε⊥

eff < 0 and ε
‖
eff < 0)

for both polarizations. Regarding the hyperbolic response,
for simplicity in the plots, we mark only the regions of

hyperbolic dispersion originating from the electric response.
The magnetic-response-originated hyperbolic dispersion re-
gion is always embedded in the DNG region, in the same way
as discussed in the last paragraph of the previous subsection,
in connection with the data of Figs. 8 and 13.

As one can see in Fig. 9, there is a pattern on the achievable
response: high-ε region at low frequencies is followed by a
HMM I region starting near the optical phonon frequency
ωT and extending into the reststrahlen band (ωT < ω < ωL).
Moreover, for high frequencies (ω > ωT ) and high filling
ratios there is a region (green areas in Fig. 9) where the
material exhibits a purely metallic response (both ε

‖
eff < 0 and

ε⊥
eff < 0). In addition, the boundaries between the different

optical phases correspond to frequencies where epsilon-near-
zero is achievable since one or more of the components of the
effective permittivity changes sign. Finally, the DNG region
is always inside the HMM I region and requires polaritonic
materials of high permittivity values (i.e., of strong phonon-
polariton resonance) and not extremely subwavelength in
size cylinders; moreover it is favored from larger cylinder
filling ratios.

IV. CONCLUSIONS

Prompted by the constantly growing interest on polaritonic
and dielectric metamaterials, we presented here a detailed
study of the electromagnetic response of metamaterial sys-
tems formed by polaritonic rods in a dielectric host, in the THz
region of the electromagnetic spectrum. Employing as model
systems systems of LiF and SiC rods, we initially studied
the response of single rod and we calculated the extinction
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efficiency for different radii of the rod, in order to identify the
nature and behavior of the major resonances for each polariza-
tion. Subsequently, using the single-rod scattering formulation
and data and employing the coherent phase approximation
effective medium approach, which can accurately describe an
inhomogeneous medium even beyond the quasistatic regime,
we obtained closed formulas for the effective parameters of
systems made of polaritonic rods in a host and we applied
them in the cases of LiF and SiC rods. We found that by proper
selection of the radius and the filling ratio of the rods one
can achieve a variety of interesting and useful metamaterial
properties in polaritonic rod systems. These properties include
engineerable permittivity (having high positive, negative, and
near-zero values), engineerable permeability (of both positive
and negative values), hyperbolic response, double negative re-
sponse and others. The possibility to achieve this rich variety
of physical properties in the THz region, which is of high tech-
nological interest, combined with the ease of fabrication of
many of those systems, makes polaritonic rod metamaterials
ideal candidates for any device aiming THz wave propagation
and scattering control.
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APPENDIX A: EFFECTIVE MEDIUM DERIVATION

In this Appendix, we give a brief derivation of the rela-
tions for the effective medium. We consider a coated cylinder
(along ẑ direction) with core radius R1 and shell thickness
R2 − R1 embedded in an infinite medium with material pa-
rameters εeff, μeff. The system is shown in Fig. 2(c). The core
cylinder is made of a material with material parameters εc, μc

and the shell of a material with material parameters εh, μh.
Depending on the incident wave polarization the fields (in

G-CGS system of units) in each region can be expanded on the
appropriate cylindrical harmonics Nemk = kZm(kρ) cos(mϕ)ẑ
and Memk = −m

ρ
Zm(kρ) sin(mϕ)ρ̂ − kZ ′

m(kρ) cos(mϕ)ϕ̂,
with k the wave number, Zm(kρ) = Hm(kρ) for outward-going
waves and Zm(kρ) = Jm(kρ) for inward-going waves [48].
For TE polarization (electric field perpendicular to the
cylinder axis) the fields outside the coated cylinder are a sum
of the incident (inward) and scattered (outward) fields, and
can be expressed as

Eout = i
∞∑

m=0

Amkeff

[
DTE

m M(outward)
emkeff

+ M(inward)
emkeff

]
, (A1)

Hout = ckeff

ωμeff

∞∑
m=0

Amkeff

[
DTE

m N(outward)
emkeff

+ N(inward)
emkeff

]
, (A2)

where DTE
m are the scattering coefficients and Amk = 1

k
2

1+δm0
im.

In an analogous way, one can express the fields in all the

regions of the scattering system, i.e., in the core cylinder and
the coating. The scattering coefficients and all the coefficients
appearing in the expansion of the fields in cylindrical har-
monics can be obtained by imposing the appropriate boundary
conditions at the different system interfaces. Applying those
conditions, one can find that the scattering coefficient DTE

m
take the form

DTE
m = nhμeffTmJ ′

m(keffR2) − neffμhKmJm(keffR2)

neffμhKmHm(keffR2) − nhμeffTmH ′
m(keffR2)

, (A3)

where

Km = �mH ′
m(khR2) + mJ ′

m(khR2), (A4)

Tm = �mHm(khR2) + mJm(khR2) (A5)

with

�m = ncμhJ ′
m(khR1)Jm(kcR1) − nhμcJm(khR1)J ′

m(kcR1),
(A6)

m = nhμcHm(khR1)J ′
m(kcR1) − ncμhH ′

m(khR1)Jm(kcR1),
(A7)

and �m/m = aTE
m (R1; c, h) are the scattering coefficients of

a single cylinder of radius R1 with material parameters εc and
μc embedded in a host material of parameters εh and μh, i.e.
a cylinder of the original system to be homogenized.

For TM polarization, the fields outside the coated cylinder
can be expressed as

Eout =
∞∑

m=0

Amkeff

[
DTE

m N(outward)
emkeff

+ N(inward)
emkeff

]
, (A8)

Hout = i
ckeff

ωμeff

∞∑
m=0

Amkeff

[
DTM

m M(outward)
emkeff

+ M(inward)
emkeff

]
(A9)

with the mth-order scattering coefficient given by

DTM
m = nhμeffUmJm(keffR2) − neffμhYmJ ′

m(ke f f R2)

neffμhYmH ′
m(keffR2) − nhμeffUmHm(keffR2)

, (A10)

where

Ym = �mHm(khR2) + �mJm(khR2), (A11)

Um = �mH ′
m(khR2) + �mJ ′

m(khR2), (A12)

and

�m = nhμcH ′
m(khR1)Jm(kcR1) − ncμhHm(khR1)J ′

m(kcR1),
(A13)

�m = ncμhJm(khR1)J ′
m(kcR1) − nhμcJ ′

m(khR1)Jm(kcR1),
(A14)

where �m/�m = aTM
m (R1; c, h). Following the CPA main con-

cept, for the medium hosting the coated inclusion to be the
valid effective medium (i.e., the medium approximating the
original system of cylinders of εc and μc in the host of εh

and μh), we must require the scattering cross section from
the coated inclusion to be identically zero. Hence, all the
scattering coefficients must be set equal to zero. That is,

DP
m = 0, (A15)
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where P = {TM, TE}. This equation reduces to the much sim-
pler one, that is

aPm(R1; c, h) = aPm(R2; eff, h). (A16)

In Eq. (A16), we have only the coefficients of simple (non-
coated) cylinders [given by Eqs. (2) and (3)], since the
scattering coefficient aPm(R; A, B) denotes the mth-order coef-
ficient for a cylinder of radius R and material parameters εA,
μA embedded in a medium with εB, μB.

If we consider only the m = 0 and m = 1 terms in
Eq. (A16), which are the dominant terms in the long-
wavelength limit, we can find explicit relations for all
components of the permittivity and permeability tensors in the
region keffR2 < 1. To do so we replace the Bessel functions
with argument keffR2 (of order 0 and 1 and their derivatives)
by their limiting expressions for small argument, employing
the series expansions

J0(x) ≈ 1 − x2

4
, (A17)

−J1(x) = J ′
0(x) ≈ − x

2
+ x2

16
, (A18)

J ′
1(x) ≈ 1

2
− 3

16
x2, (A19)

H0(x) ≈ 2i

π
[ln(x/2) + γ ] + 1, (A20)

−H1(x) = H ′
0(x) ≈ 2i

πx
− x

2
+ iαx, (A21)

H ′
1(x) ≈ 2i

πx2
+ 1

2
+ i

π
− iα, (A22)

where γ = 0.577215 is the Euler-Mascheroni constant and
α = − 1

π
[ln(x/2) + γ − 1

2 ].
Employing Eqs. (A16) and (A17)–(A22) (keeping in most

of the cases only their lowest order term) we result to the
effective medium formulas (16)–(19) of the main text. In
particular,

aTM
0 (R1; c, h) = aTM

0 (R2; eff, h) → ε
‖
eff, (A23)

aTM
1 (R1; c, h) = aTM

1 (R2; eff, h) → μ⊥
eff, (A24)

aTE
0 (R1; c, h) = aTE

0 (R2; eff, h) → μ
‖
eff, (A25)

aTE
1 (R1; c, h) = aTE

1 (R2; eff, h) → ε⊥
eff. (A26)

APPENDIX B: SCATTERING/ABSORPTION

To illustrate more clearly the dependence of the single-
cylinder absorption and scattering efficiencies on the cylinder
radius, which was discussed in connection with Fig. 5, we
present here the scattering and absorption efficiencies for
different indicative radii. Figure 10 shows the scattering and
absorption efficiencies for a LiF cylinder in air, while Fig. 11
shows corresponding results for a SiC cylinder. As can be
seen in Figs. 10 and 11, the results support the discussion of
Sec. III A regarding the tendencies of the scattering and ab-
sorption efficiencies as the cylinder radius increases.

FIG. 10. Scattering (solid lines) and absorption (dashed lines)
efficiencies of a LiF cylinder (of radius 0.3 and 1.5 μm) in air for
(a) TM and (b) TE polarization. The shaded areas correspond to the
frequency region where the dielectric function of LiF is negative.

FIG. 11. Scattering (solid lines) and absorption (dashed lines)
efficiencies of a SiC cylinder (of radius 0.1 and 0.5 μm) in air for
(a) TM and (b) TE polarization. The shaded areas correspond to the
frequency region where the dielectric function of SiC is negative.
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FIG. 12. Imaginary (solid lines) and real (dashed lines) parts of
the parallel (a) and the perpendicular (b) components of the relative
effective permittivity for LiF cylinders with filling ratio 30% in air,
for different radii, R (mentioned in the legends), using the CPA. The
shaded areas correspond to the frequency region where the dielectric
function of LiF is negative.

APPENDIX C: EFFECTIVE PARAMETERS

In Figs. 12 and 13, we plot the imaginary part of the
effective permittivity and permeability components for the
systems of LiF and SiC cylinders discussed in Sec. III B (for
the LiF case only the effective permittivity components are
plotted). We also plot there the real part of those components,
copied from Figs. 6 and 8, for an easy comparison and as-
sessment of the functionality of the composites. As can be
seen from Figs. 12 and 13, apart of a very narrow frequency
region around the resonance frequencies of the components
where the losses are significant, in all other frequency regions,
the losses are quite negligible. This shows that, unlike many
plasmonic systems, in polaritonic rod systems resistive losses
are not a major problem hindering their applicability.

Closing, we should note that the results presented for both
LiF and SiC systems concern frequency regions where khR2 <

1, where the contribution of higher order modes and of lattice
(or multiple scattering) effects is still not important, and thus
the CPA results are expected to be highly accurate. Beyond
this regime (which for LiF systems of R = 1.5 μm, f = 30%,
is up to 16 THz and for SiC of R = 0.8 μm, f = 30%, is
up to 30 THz) the CPA results are expected to become less
and less accurate. Moreover the peak values of the calculated
effective permittivity and permeability (i.e., the values exactly
and very close to the position of the resonance) may be not
very accurate, as at those frequencies the CPA restriction
keffR2 might be violated (these regions though, due to the high
associated losses, are not considered suitable in applications
involving polaritonic metamaterials).

FIG. 13. Imaginary (solid lines) and real (dashed lines) parts of parallel [(a) and (d)] and perpendicular [(b) and (c)] components of the
relative effective permittivity (upper row) and permeability (lower row) for SiC cylinders with filling ratio 30% in air, for different radii, R
(mentioned in the legends) using the CPA. The shaded areas correspond to the frequency region where the dielectric function of SiC is negative.
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