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Accessible phases via wave impedance engineering with PT-symmetric metamaterials

Sotiris Droulias ,1,2,* Ioannis Katsantonis,1,2 Maria Kafesaki,1,2 Costas M. Soukoulis,1,3 and Eleftherios N. Economou 1,4

1Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 71110 Heraklion, Crete, Greece
2Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece

3Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
4Department of Physics, University of Crete, 71003 Heraklion, Greece

(Received 10 September 2019; published 22 November 2019)

Optical systems that respect parity-time (PT) symmetry can be realized with proper incorporation of gain/loss
materials. However, due to the absence of magnetic response at optical frequencies, the wave impedance is
defined entirely by their permittivity and, hence, the PT-symmetric character is controlled solely via their
refractive index. Here, we show that the separate tuning of the wave impedance enabled by metamaterials can
grant access to wide control of the exceptional points, appearance of mixed phases (coexistence of PT-symmetric
and PT-broken phases) and occurrence of phase reentries, not easily realizable with natural materials.
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I. INTRODUCTION

Optical systems with gain and loss that respect parity-
time (PT) symmetry can have real eigenvalues despite their
non-Hermitian character; the eigenvalues remain real below
some critical value of the potential, the so-called exceptional
point (EP), above which they become complex and hence
the EP marks the passing from the PT-symmetric phase to
the broken-PT phase. This is an idea, originally introduced
in the context of quantum mechanics [1–4], which quickly
found fertile ground in optics due to the mathematical equiv-
alence with paraxial beam propagation, which is described
by a Schrödinger-like equation [5–11]. The extension of PT
symmetry to systems in which the eigenvalues refer to those
of the scattering matrix [12–21] led to novel phenomena, such
as coherent perfect absorption [13,14], the PT-laser absorber
[15,16], and anisotropic transmission resonances [18]. In such
systems, the condition to achieve PT symmetry is expressed
in terms of the permittivity ε and permeability μ as ε(r) =
ε∗(−r) and μ(r) = μ∗(−r), where r is the position operator
and the asterisk denotes the complex conjugate [22,23]. When
realized with natural optical materials, the magnetic response
is absent and, therefore, the PT condition can be controlled
only via ε. However, most recently, some works combined PT
symmetry with metamaterials [22–27], which could extend
these ideas to new limits, as metamaterials can be designed
to have the desired ε and μ, at almost any frequency [28].

While the ability to control the PT phase can grant access
to important properties, such as (a) mixed phases (coexis-
tence of PT-symmetric and PT-broken phase) and (b) phase
reentries (multiple passes among all possible phases), these
aspects have not been investigated thoroughly. For example, in
Ref. [29] the occurrence of mixed phases was shown to require
polarization converting elements, while phase reentries were
shown in [27] for TE waves in the special case of epsilon
near-zero metamaterials only.

*sdroulias@iesl.forth.gr

In this work, we show that the coexistence of PT-
symmetric and PT-broken phases occurs naturally in systems
as simple as a one-dimensional gain/loss bilayer. These mixed
phases emerge in oblique incidence [30–32] as a result of the
different wave impedances of TE and TM linearly polarized
waves, which are otherwise identical in normal incidence and
therefore in that case the mixed phase vanishes. By properly
engineering the wave impedance, we show that the passing
of TE waves from the PT-symmetric to the PT-broken phase
can precede, succeed, or even coincide with that of the TM
waves, thus allowing for tuning and eventually suppressing
the mixed phase. We also show that, while natural materials
favor a single exceptional point and thus a unique phase
change, with metamaterials it is possible to engineer the
wave impedance and observe multiple exceptional points and
therefore phase reentries. Last, an important aspect of our
work is the formulation in terms of the refractive index n and
the wave impedance ζ . This approach provides a generalized
description and deeper insight to the mechanism of phase
change, as compared to all previous works where the analysis
is based on ε and μ.

II. PT-SYMMETRIC GAIN/LOSS BILAYER

A. Conditions for PT-symmetric phase in
TE and TM polarizations

Considering one-dimensional systems, the conditions to
achieve PT symmetry for parameters changing, e.g., along the
z direction are expressed in terms of the relative permittivity
ε and relative permeability μ as ε(z) = ε∗(−z) and μ(z) =
μ∗(−z) [22,23]. These impose on the refractive index n =√

εμ and the wave impedance ζ = √
μ/ε to fulfill

n(z) = n∗(−z), ζ (z) = ζ ∗(−z). (1)

Such conditions can be satisfied in the system of Fig. 1,
which consists of two homogeneous gain/loss slabs which
are infinite on the xy plane and have finite length along the
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FIG. 1. A PT-symmetric heterostructure with a single gain/loss
bilayer. The complex material parameters ni, ζi are the refractive
index and the wave impedance, respectively, and the subscript i =
{g, l} denotes whether they are located in the gain (red) or the
loss (blue) region. For PT symmetry the shown parameters satisfy
ng = nl

∗, ζg = ζl
∗, and Lg = Ll . The incident and scattered waves

can be either TE or TM polarized, as shown.

z direction. Without loss of generality, gain (loss) is assumed
to be embedded entirely in the left (right) slab.

To study the scattering properties of the gain/loss bilayer,
we assume that waves arrive at angle ϑinc from either side
of the system (propagating along the z direction) and we
measure the scattered fields. The system is assumed to be in
a homogeneous environment (air, for simplicity) and, hence,
the waves exit the system at the same angle. Their polarization
can be a mixture of TE components (Hx, Ey, Hz) and TM
components (Ex, Hy, Ez) as shown in Fig. 1, where b, c, and
a, d are the amplitudes of the incoming and outgoing waves,
respectively. Although PT-symmetry requirements impose
certain conditions in the loss and gain regions [see Eq. (1)],
we start with slabs of arbitrary lengths, Lg, Ll and arbitrary
material parameters ng, nl , ζg, ζl to obtain general expressions.
Because the two polarization states are orthogonal to each
other, the system can be described by two independent 2
× 2 scattering matrices, namely STE and STM, correspond-
ing to TE and TM waves, respectively. Each individual Sp

matrix [the superscript p = {TE, TM} denotes the respective
polarization] consists of two reflection and two transmission
amplitudes, namely rp

L, rp
R, t p

L , t p
R , where the subscript L, R

indicates incidence from “Left” or “Right,” respectively (see
Appendix for analytical expressions). As in the case of normal
incidence [16,18], we find for both polarizations that rp

L �= rp
R

and t p
L = t p

R ≡ t p. In general, rp
L, rp

R, and t p are different for
TE and TM waves, except for normal incidence, where they
become identical. Following the standard definition [16,18],
Sp is written as[

a
d

]
= Sp

[
b
c

]
≡

[
rp

L t p

t p rp
R

][
b
c

]
. (2)

To identify whether the system lies in the PT-symmetric or
PT-broken phase, we need to examine the eigenvalues λ

p
1,2 of

Sp, λ
p
1,2 = [rp

L + rp
R ±

√
(rp

L − rp
R)2 + 4(t p)2]/2 [18]. Because

rTE
L �= rTM

L , rTE
R �= rTM

R , and tTE �= tTM in oblique incidence,
the eigenvalues are different as well for each of the two polar-
izations. For each individual polarization, due to the presence
of gain and loss, |λp

1,2| �= 1 in general. However, if we apply
PT conditions an exceptional point emerges, below which
|λp

1| = |λp
2| = 1 (PT-symmetric phase), and λ

p
1, λ

p
2 become

an inverse conjugate pair above it, satisfying |λp
1||λp

2| = 1
[16,18] (PT-broken phase). As shown in Ref. [16], for the
eigenvalues of Sp to satisfy |λp

1| = |λp
2| = 1 and therefore

for the system to be in the PT-symmetric phase, the criterion
is |(rp

L − rp
R)/t p| < 2. For each of the two polarizations, after

some calculations we find that this condition can be written as

TE :

∣∣∣∣∣
(

ZTE
l

ZTE
g

− ZTE
g

ZTE
l

)
sin(δg) sin (δl )

∣∣∣∣∣ < 2, (3a)

TM :

∣∣∣∣∣
(

ZTM
l

ZTM
g

− ZTM
g

ZTM
l

)
sin(δg) sin (δl )

∣∣∣∣∣ < 2, (3b)

where ZTE
g/l = ζg/l

cos θg/l
, ZTM

g/l = ζg/l cos θg/l is the wave
impedance for TE and TM waves, respectively, and
δg/l = ng/l (ω/c)Lg/l cosϑg/l [ng/l , ζg/l are defined according
to Eq. (1)]. The angle ϑg/l is the wave-propagation angle
inside the g/l region and is defined by the continuity of
the tangential k components as sin(ϑinc) = ng/lsin(ϑg/l )
(the refractive index of the exterior—-air—-is unity).
Equations 3(a) and 3(b) are the central results of this work,
which we analyze next.

B. Mixed phases in natural nonmagnetic optical materials

With simple inspection, Eqs. (3a) and (3b) have the same
general form, which is a consequence of the duality of
Maxwell’s equations for E- and H- fields; however, they
are not identical. Due to the cosϑg/l term which appears
asymmetrically in ZTE

g/l , ZTM
g/l , the term in parenthesis in the

left-hand side of Eq. (3) is different among TE and TM waves
and therefore the exceptional points for the two polarizations
are spontaneously different. As a result, one polarization can
pass to the PT-broken phase while the other still resides in
the PT-symmetric phase, thus giving rise to a mixed PT phase
for waves of arbitrary polarization, such as unpolarized light.
The emergence of the mixed phase is thus a consequence
of oblique incidence entirely, as for normal incidence where
ϑinc = 0 and therefore ϑg = ϑl = 0, Eqs. (3a) and (3b) be-
come identical and therefore the exceptional points of both
polarizations coincide, as shown in Eq. (4):

TE/TM
(θinc=0)

:

∣∣∣∣
(

ζl

ζg
− ζg

ζl

)
sin

(
ng

ω

c
Lg

)
sin

(
nl

ω

c
Ll

)∣∣∣∣ < 2.

(4)

To demonstrate the above findings, we assume a non-
magnetic medium (μg = μl = 1) with ng = 2 − 0.2i, nl =
2 + 0.2i, as considered in previous works [18], and we scan
the angle of incidence ϑinc. The two slabs have equal length
Lg = Ll ≡ L/2 and for each ϑinc we calculate the eigenvalues
of STE, STM as a function of the normalized frequency ωL/c
(c is the vacuum speed of light). The cases where both
polarizations are in the PT-symmetric or the PT-broken phase
are denoted in Fig. 2(a) as “symmetric PT” and “broken PT,”
respectively. The region marked as “mixed PT” denotes that
one polarization has passed into the broken-PT phase, while
the other still resides in the PT-symmetric phase. In Fig. 2(b)
we show explicitly the calculated eigenvalues for ϑinc = 30◦
and ϑinc = 60◦.
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FIG. 2. Mixed phases as a consequence of oblique incidence,
for a nonmagnetic medium (μ = 1) with ng/l = 2 ∓ 0.2i. (a) Phase
diagram and (b) calculated scattering matrix eigenvalues for ϑinc =
30◦ and 60°. In the “symmetric-PT” and “broken-PT” regions both
TE and TM polarizations are in the same phase. In the “mixed-PT”
region TE waves have passed into the PT-broken phase, while TM
waves still reside in the PT-symmetric phase.

C. Mixed phases and phase reentries in metamaterials

Clearly, the exceptional points for TE and TM waves split
spontaneously when we depart from normal incidence, but, if
desired, the mixed phase can be suppressed even in oblique
incidence, with properly engineering the wave impedance.
Such an extraordinary case, although difficult to observe with
natural nonmagnetic optical materials, can be accomplished
with metamaterials, which allow for tailored electric and
magnetic response via their resonances. For example, the
fishnet metamaterial, which provides simultaneously electric
and magnetic response, could serve as a realistic system for
tailoring the wave impedance [28]. To understand how, let us
write the complex wave impedance for the gain and loss re-
gions in polar form as ζg = |ζg|exp(iϕg) and ζl = |ζl |exp(iϕl ),
respectively. The PT conditions impose |ζg| = |ζl | ≡ |ζ | and
ϕg = −ϕl ≡ ϕ, i.e., ζg = |ζ |e+iϕ and ζl = |ζ |e−iϕ . Then, the
magnitude |ζ | is eliminated everywhere in Eqs. (3a) and (3b)
and terms of the form e±2iϕ appear, as shown in Eqs. (5a) and
(5b):

TE :

∣∣∣∣
(

e−2iφ cos θg

cos θl
− e+2iφ cos θl

cos θg

)
sin(δg) sin(δl )

∣∣∣∣ < 2,

(5a)

TM :

∣∣∣∣
(

e−2iφ cos θl

cos θg
− e+2iφ cos θg

cos θl

)
sin(δg) sin(δl )

∣∣∣∣ < 2.

(5b)

This result implies that the positions of the exceptional points
are not expected to depend on the magnitude of ζ , but solely
on the relative strength between its real and imaginary part,
which is expressed via ϕ. Simple observation leads to the
conclusion that Eqs. (5a) and (5b) become identical if ϕ

becomes multiples of π/4. This means that the exceptional
points of TE and TM waves coincide if |Re(ζg/l )| = |Im(ζg/l )|
or Re(ζg/l ) = 0 or Im(ζg/l ) = 0 and this causes the mixed
phases to vanish. Furthermore, a sign flip in ϕ interchanges
Eqs. (5a) and (5b), i.e., the exceptional points of TE and

FIG. 3. Engineering of mixed phases via the wave impedance,
ζg/l = |ζ |e±iϕ , for a system with ng/l = 2 ∓ 0.2i and |ζ | = 0.5. (a)
ϕ = +3◦, (b) ϕ = 0, (c) ϕ = −3◦. The phase separation depends
solely on ϕ (not on |ζ |, which just adjusts the magnitude of the
eigenvalues in the broken-PT phase). A sign flip in ϕ exchanges the
position of the TE and TM exceptional points [compare (a), (c)]
and for ϕ = m × π/4 (m: integer) the mixed phase is completely
suppressed, as shown in (b) for m = 0.

TM waves exchange positions. From this analysis it is also
evident that the refractive index does not participate in the
tailoring of the mixed phases. This is not surprising, as n
appears only in the arguments of the sine terms in Eqs. (5a)
and (5b), which are identical for both expressions and,
hence, the mixed phases are tailored via the wave impedance
entirely. We note here that with natural gain/loss materi-
als in which μg = μl = 1 → ζg/l = (1/εg/l )1/2 = 1/ng/l , and
therefore |Re(ζg/l )|/|Im(ζg/l )| = |Re(ng/l )|/|Im(ng/l )|. Due to
this result, because |Re(ng/l )| 	 |Im(ng/l )| it follows that
|Re(ζg/l )| �= |Im(ζg/l )| and, hence, the mixed phases appear
naturally; to eliminate them, independent tuning of the wave
impedance is required, i.e., a magnetic response is necessary.

To demonstrate the above findings, we return to the system
of the previous example with ng = 2 − 0.2i, nl = 2 + 0.2i,
for which we now allow for magnetic response. We set |ζ | =
0.5(∼ |1/ng/l |) and tune the wave impedance via the angle
ϕ. Figure 3 shows examples for ϕ = +3◦ [panel (a)], ϕ = 0
[panel (b)], and ϕ = −3◦ [panel (c)]. As predicted, the phase
separation does not depend on the magnitude of ζ , but solely
on ϕ (|ζ | just adjusts the magnitude of the eigenvalues in the
broken-PT phase and not the position of the exceptional point,
see Appendix). A sign flip in ϕ exchanges the position of
the TE and TM exceptional points [compare Figs. 3(a) and
3(c)] and for ϕ = m × π/4 (m: integer) the mixed phase is
completely suppressed as shown in (b), which corresponds to
the case of m = 0.

Engineering the wave impedance with metamaterials can
also grant access to phenomena not easily obtainable with
natural materials, such as phase reentries, as a consequence
of multiple exceptional points. To understand how this is
possible, let us consider the case of normal incidence, for
which Eq. (4) is simplified considerably and helps elucidate
the important aspects. If we write the PT-symmetric n and ζ
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FIG. 4. Explanation of phase reentries via wave impedance engi-
neering for a system with ng/l = 2 ∓ 0.1i and ζg/l = ζ ′ ± iζ ′′ (normal
incidence). The ratio |ζ ′′/ζ ′| tunes the oscillation amplitude of the lhs
of Eq. (6), plotted as green line. (a) Weak oscillation for |ζ ′′/ζ ′| =
0.1 and single exceptional point. (b) Intermediate oscillation for
|ζ ′′/ζ ′| = 0.3 and initiation of phase reentries. (c) Strong oscillation
for |ζ ′′/ζ ′| = 1, leading to multiple phase reentries. For oblique in-
cidence these results become richer, as mixed phases are introduced.

as ng/l = n′ ∓ in′′, ζg/l = ζ ′ ± iζ ′′, Eq. (4) is now expressed
in terms of the real quantities n′, n′′, ζ ′, ζ ′′ as

TE/TM
(θinc=0)

:

∣∣∣∣ 2iζ ′ζ ′′

ζ ′2 + ζ ′′2

(
cos

(
n′ ωL

c

)
− cosh

(
n′′ ωL

c

))∣∣∣∣ < 2.

(6)

The left-hand side (lhs) of this inequality consists of an
oscillatory part (cos term) with amplitude 2ζ ′ζ ′′/(ζ ′2 + ζ ′′2),
which undergoes an exponentially growing offset (cosh term)
with a rate that depends on the strength of n′′, i.e., ζ tunes the
oscillation amplitude, while n tunes its offset. Phase reentries
mean that the lhs of Eq. (6) exceeds the right-hand side multi-
ple times as function of ωL/c. This requires strong oscillatory
amplitude, which is maximized for ζ ′ = ±ζ ′′, along with
suspended offset, i.e., relatively weak n′′. We note here that
with natural gain/loss materials in which ζg/l = 1/ng/l , the
oscillation amplitude becomes 2n′n′′/(n′2 + n′′2) and, hence,
the need for strong oscillation amplitude is now expressed as
n′′ = n′, thereby contradicting the need for weak amplitude
offset, i.e., n′′ � n′. Because both requirements involve n′′ in
the opposite manner, it is somewhat difficult to achieve phase
reentries with natural materials; however, with metamaterials,
such cases are possible.

In Fig. 4 we show the eigenvalues for a system with n′ = 2
and n′′ = 0.1 (i.e., ng/l = 2 ∓ 0.1i) in normal incidence, for
which ζ ′ = 1, and ζ ′′ is tuned among three distinct values,
namely 0.1, 0.3, and 1, in order to adjust the oscillation
amplitude of the lhs of Eq. (6), which we plot in Fig. 4 as
|(rL − rR)/t | − 2, where rp

L ≡ rL, rp
R ≡ rR, and t p ≡ t (due to

normal incidence the scattering amplitudes are identical for
both polarizations).

For ζ ′′ = 0.1 (weak oscillation) the system passes on to the
broken-PT phase at ωL/c = 29.4. As ζ ′′ becomes stronger,
the oscillation becomes stronger and for ζ ′′ = 0.3 a double-
phase reentry occurs in the region ωL/c ∼ 17–22. Last, for

FIG. 5. Universal phase diagram for a system with n = 2 ∓ 0.1i
and |ζ ′′/ζ ′| = 0.3, corresponding to several choices for ε and μ.
The possibilities for (a) mixed phases and (b) phase reentries can
be achieved as function of either ωL/c or θinc, as denoted with the
dashed vertical lines. The marked cases show partial phase reentry
(line A), full phase reentry (line B), and typical phase change from
PT-symmetric to the PT-broken phase (line C). Note that the cross
section at θinc = 0 corresponds to the plot shown in Fig. 4(b).

ζ ′′ = 1 we observe several passes from the PT-symmetric
to the broken-PT phase in the region ωL/c ∼ 0–16. At the
same time, the exceptional points are shifted to lower ωL/c,
illustrating how their position can be further tailored via
wave impedance engineering. The latter case (ζg/l = 1 ± i)
maximizes the oscillation amplitude in the lhs of Eq. (6),
because it corresponds to ζ ′ = ζ ′′, and therefore provides the
maximum reentry effect. Additionally, ζ ′ = ζ ′′ corresponds
to ϕ = ±π/4 in accordance with our previous analysis and
therefore the mixed phase is completely eliminated when we
examine the same system in oblique incidence. In general,
though, there is no need for such strict condition and both
reentry effects and mixed phases can be still achieved if |ζ ′|,
|ζ ′′| are not equal, especially at large angles where the cosϑg/l

terms become significant. This will become apparent in the
following example. In any case, the important conclusion is
that, for a fixed refractive index ng/l , all tunability depends
on the ratio |ζ ′′/ζ ′| and not on the magnitude of ζ ; the same
phase diagrams correspond to any wave impedance with the
same relative strength between its real and imaginary part. In
other words, these graphs show a parametric family, which
can be achieved with several different sets of ε and μ.

The results shown so far in terms of the normalized pa-
rameter ωL/c imply constant material parameters, which are
not easily realizable with real, dispersive materials [21]. In
practice, however, because the optical potential involves both
the refractive index and the wave impedance—-besides the
frequency—-, the PT-transition can be observed at a single
frequency, with varying the values of gain and loss or just the
incidence angle ϑinc (which tunes the angle ϑg/l that appears in
ZTE

g/l , ZTM
g/l ). To demonstrate this alternative, in Fig. 5 we show

the phase diagram of the previous system with ng = 2–0.1i,
nl = 2 + 0.1i, and |ζ ′′/ζ ′| = 0.3 for ϑinc �= 0, i.e., we expand
the case shown for normal incidence in Fig. 4(b) to account
for oblique incidence.

This reveals a rich behavior and the possibilities for mixed
phases and phase reentries as function of either ωL/c or
ϑinc. The vertical dashed lines demonstrate three characteristic
cases, which are accessible with scanning ϑinc, while keeping
all the other parameters fixed. From this example it is evident
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that partial phase reentries (line A), full phase reentries (line
B), and typical phase changes (line C) are possible all within
the same system with constant material parameters. Note also
that in the examples shown in Fig. 4 and Fig. 5 we have
assumed that |ζ ′′/ζ ′| � 1. When the values of ζ ′′, ζ ′ are in-
terchanged, this ratio is reversed, the TE and TM exceptional
points exchange positions, and therefore the phase diagram
remains the same (see Appendix for details).

III. INDEPENDENT CONTROL OF ANISOTROPIC
TRANSMISSION RESONANCES

It is well known [16,18] that the scattering matrix can
be alternatively defined to have its diagonal occupied by the
transmission amplitudes, rather than the reflection amplitudes:[

d
a

]
= Sp

c

[
b
c

]
≡

[
t p r p

R
rp

L t p

][
b
c

]
, (7)

where the superscript p = {TE, TM} denotes the respective
polarization. This definition of Sp, which we will refer to as Sp

c

in accordance with Ref. [18], results from simple permutation
of the outgoing channels [compare with Eq. (2)] and therefore
the eigenvalues of Sp and Sp

c are not the same. This fact
naturally raises the question of whether the examined phase
diagrams depend on the chosen representation.

As was shown in Refs. [18,23], while the exceptional
points of Sp are associated with processes such as lasing
or coherent perfect absorption, the exceptional points of Sp

c

correspond to anisotropic transmission resonances (ATRs).
These are points of operation where the reflectance from one
side of the system is zero and the transmittance T p ≡ |t p|2
is 100% from either side of the system (the eigenvalues of Sp

c

are λ
p
c1,c2 = t p ± √

rp
Lrp

R and ATRs occur when rp
L = 0 or rp

R =
0 [18]). In the Sp

c representation, the PT-symmetric phase
(|λp

c1| = |λp
c2| = 1) corresponds to T p < 1 and the broken-

PT phase (|λp
c1| = 1/|λp

c2|) to T p > 1; in the mixed phase
T p < 1 for one polarization and T p > 1 for the other. Hence,
Sp and Sp

c describe different aspects of the same scattering
process and the information provided by each one of them is
unique and complementary.

As an example, in Fig. 6 we examine a system with
ng = 2–0.1i, nl = 2 + 0.1i and ζg = 1 + 0.3i, ζl = 1–0.3i,
which falls under the general case of |ζ ′′/ζ ′| = 0.3, previously
examined in Fig. 5. In Fig. 6(a) we plot the phase diagram
of Sp

c ; the white background corresponds to the symmetric-
PT phase for both polarizations, i.e., |λTE

c1,c2| = |λTM
c1,c2| = 1

and therefore T TE < 1 and T TM < 1. We denote the individ-
ual broken-PT phase for TE and TM waves as “T TE > 1”
(magenta regions, where |λTE

c1 | = 1/|λTE
c2 |) and “T TM > 1”

(striped regions where |λTM
c1 | = 1/|λTM

c2 | ), respectively, and
mixed phases occur where one of these regions overlaps with
the white background (both regions overlapping leads to fully
broken PT symmetry). The boundary of each region defines
ATRs for each individual polarization. Whenever these indi-
vidual boundaries cross, the ATRs coincide and TE and TM
waves undergo simultaneously unidirectional reflectionless
perfect transmission. Hence, these special points serve as
ATRs for unpolarized light (marked here with open circles and
denoted as “common ATR”). All other ATRs located at the

FIG. 6. System with n = 2 ∓ 0.1i and ζ = 1 ± 0.3i, examined
in terms of Sp

c , the alternative definition for the scattering matrix.
(a) Phase diagram. The white background denotes the simultaneous
symmetric-PT phase of TE and TM waves; the magenta and striped
regions correspond to the individual broken-PT phase of TE and TM
waves, respectively. (b) Eigenvalues λTE

c and λTM
c , (c) transmittances

T TE and T TM, and (d) reflectances RTE
R and RTM

R , at θinc = 61.8◦. The
common ATR points correspond to zero reflectance from one side of
the system and 100% transmittance from either side, simultaneously
for TE and TM waves.

boundaries of the individual regions occur for either TE or TM
waves; these could serve as ATRs for polarization discrim-
ination, for example. To further elucidate these aspects we
choose ϑinc = 61.8◦, where a common ATR occurs at ωL/c =
19.3, and in Fig. 6(b) we show the calculated eigenvalues, in
Fig. 6(c) the respective transmittances T TE and T TM and in
Fig. 6(d) the reflectances RTE

R and RTM
R , where Rp

R ≡ |rp
R|2 (i.e.,

reflectances with wave incident from the right side).
In these plots it is evident that when the eigenvalues

enter the broken-PT phase, the transmittance exceeds 100%.
Exactly at the exceptional points the transmittance becomes
100% and the reflectance zero (ATR); for the chosen range
we observe eight ATRs for TE waves and nine ATRs for
TM waves in total. When two such points coincide (e.g., at
ωL/c = 19.3) an ATR common for both polarizations occurs.

Contrary to Sp, where the positions of the exceptional
points do not depend on the magnitude of ζ but solely on the
ratio |ζ ′′/ζ ′|, in the case of Sp

c they do depend on the exact
values of ζ ′, ζ ′′. As a result, while a certain |ζ ′′/ζ ′| ratio de-
fines a unique phase diagram for Sp, it corresponds to multiple
phase diagrams for Sp

c . This fact is of great importance, as it
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FIG. 7. Demonstration of independent control of Sp phases (as-
sociated with lasing and coherent absorption) and Sp

c phases (as-
sociated with ATRs) for systems with n = 2 ∓ 0.1i and |ζ ′′/ζ ′| =
0.3. The universal phase diagram of Sp is shown in (a) and below
individual phase diagrams of Sp

c are shown for (b) ζ = 1 ± 0.3i,
(c) ζ = 0.5 ± 0.15i, and (d) ζ = 2 ± 0.6i. The phase diagram of
Sp corresponds to all three cases of Sp

c that satisfy |ζ ′′/ζ ′| = 0.3
and therefore different ATRs can be engineered for a certain lasing
configuration. The regions in (a) and (b) within the box correspond
to the data shown in Fig. 5 and Fig. 6(a), respectively.

allows us to design the position of the ATRs (related to the
exceptional points of Sp

c ) independently of the position of the
lasing operation (related to the exceptional points of Sp).

In relevance to our last example, this means that for
other choices of ζ ′, ζ ′′ all satisfying |ζ ′′/ζ ′| = 0.3 and thus
corresponding to the universal phase diagram of Fig. 5, we
expect different phase diagrams for Sp

c and therefore different
configurations of ATRs

To demonstrate this possibility, we return to our last exam-
ple with ng = 2–0.1i, nl = 2 + 0.1i and choose three differ-
ent wave impedances satisfying |ζ ′′/ζ ′| = 0.3. The common
phase diagram for Sp is shown in Fig. 7(a) and is an extended
version of Fig. 5 as denoted with the box. The phase diagram
for Sp

c is shown individually for each case, namely for (b)
ζg = 1 + 0.3i, ζl = 1 − 0.3i, (c) ζg = 0.5 + 0.15i, ζl = 0.5 −
0.15i,and (d) ζg = 2 + 0.6i, ζl = 2 − 0.6i. The color code
follows the same conventions as in Fig. 6(a), which is repeated
here in Fig. 7(b) to facilitate the comparison.

Clearly, for a certain |ζ ′′/ζ ′| ratio, the exact values of ζ ′,
ζ ′′ change the phases of Sp

c and play no role in those of
Sp. In other words, once the phase diagram of Sp is chosen,

the phase diagram of Sp
c can be tuned independently. We

emphasize here that with natural (nonmagnetic) materials the
unique correspondence between n and ζ leads to a unique
correspondence between the phase diagrams of Sp and Sp

c ,
and therefore no independent control between the individual
exceptional points as we have demonstrated.

IV. CONCLUSION

In conclusion, we have shown that the coexistence of PT-
symmetric, PT-broken, and mixed phases is possible even
in simple one-dimensional photonic heterostructures with a
single gain/loss bilayer. This plethora of phases including
reentry behaviors (see Fig. 5) emerges as a result of the
different wave impedances, properly engineered, between TE
and TM linearly polarized waves; by varying the relative
strength of these impedances simply through the angle of
oblique incidence the obtained very rich phase diagram is
achieved without requiring polarization converting elements
or other additional components. We have further shown that
the exceptional points of TE and TM waves can be tuned
to modify and even suppress the mixed phase. We have also
shown that, while natural materials favor a single exceptional
point and thus a unique passing from PT-symmetric to PT-
broken phase, with metamaterials it is possible to engineer
the wave impedance (independently of the refractive index)
to observe multiple exceptional points and therefore phase
reentries. All the above possibilities become clear when the
system is examined under the prism of n and ζ , rather than
ε and μ. Specific cases examined in previous works all fall
within our generalized approach, which provides a unified de-
scription, deep insight, and specific guidelines for the design
of the desired response.
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APPENDIX

1. Scattering amplitudes of TE and TM
waves in oblique incidence

To find the reflection and transmission amplitudes of the
double-slab system we solve Maxwell’s equations with the
boundary conditions at each material interface. We assume
that waves arrive at angle ϑinc from either side of the system,
with polarization which can be a mixture of TE components
(Hx, Ey, Hz) and TM components (Ex, Hy, Ez) as shown in
Fig. 1. For simplicity we assume that the surrounding space is
air and, therefore the wave number outside the double slab
is k0, the free-space wave number. Inside each slab region
the waves propagate at angle ϑi, (the subscript i = {g, l}
denotes the gain and loss region, respectively) and is given
by k0 sin(ϑinc) = kg sin(ϑg) = kl sin(ϑl ), which results from
the continuity of the tangential field components at each
interface. In the last relation kg/l is the wave number in each
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FIG. 8. Interchangeability of properties between TE and TM waves. (a) Universal phase diagram of the system of Fig. 4 with ng/l =
2 ∓ 0.1i and ζg/l = ζ ′ ± iζ ′′ with ζ ′ = 1, ζ ′′ = ±0.1 or ζ ′ = 0.1, ζ ′′ = ±1. Under these choices the range of the symmetric-PT, mixed-PT,
and broken-PT phase is preserved. However, depending on the individual choice for ζ ′, ζ ′′, the magnitude of the eigenvalues changes, as
shown on the right panels for ϑinc = 60◦ and choice of (b) ζ ′ = 1, ζ ′′ = +0.1, (c) ζ ′ = 1, ζ ′′ = −0.1, (d) ζ ′ = 0.1, ζ ′′ = +1, and (e) ζ ′ = 0.1,
ζ ′′ = −1. Notice how all choices share the same phase diagram, while the exceptional points of TE and TM waves may interchange positions.
This general property owes its validity to the symmetric way that the wave impedances of TE and TM waves appear in Eq. (3).

region, which is given by kg/l = k0
√

εg/lμg/l ≡ k0ng/l , thereby
reducing the relation to sin(ϑinc) = ng/l sin(ϑg/l ), as presented
in the main text. To satisfy the PT-symmetry requirements
given by Eq. (1), we are interested in material parameters of
certain spatial symmetry; however, we start with slabs of arbi-

trary properties, εi, μi, and Li, to obtain general expressions.
The general (non-PT) analytical expressions for the reflection
and transmission amplitudes, rp

L/R and t p
L/R, are listed below.

The subscript L/R denotes incidence from Left/Right and the
superscript p = {TE, TM} denotes the incident polarization.

TE polarization (Hx, Ey, Hz): TM polarization (Ex, Hy, Ez):

rTE
L = −e−2iLgk0 cos θinc

CTE
L + DTE

L

ATE + BTE
rTM

L = −e−2iLgk0 cos θinc
CTM

L + DTM
L

ATM + BTM
(A1)

rTE
R = −e−2iLl k0 cos θinc

CTE
R + DTE

R

ATE + BTE
rTM

R = −e−2iLl k0 cos θinc
CTM

R + DTM
R

ATM + BTM

and tTE
L = tTE

R ≡ tTE with and tTM
L = tTM

R ≡ tTM with

tTE = −8e−ik0 (Lg+Ll ) cos θinc ei(Lgkg cos θg+Ll kl cos θl ) RgRl cos θinc

ATE + BTE
tTM = −8e−ik0 (Lg+Ll ) cos θinc ei(Lgkg cos θg+Ll kl cos θl ) RgRl cos θinc

ATM + BTM

where Rg = cos θg

cos θinc
Rl = cos θl

cos θinc
and:

ATE=Zg cos θl

(
+

(
Rg
Zg

+1
)
+

(
Rg
Zg

− 1
)

e2iLgkg cos θg
)(

−
(

Rl
Zl

+1
)
+

(
Rl
Zl

− 1
)

e2iLl kl cos θl

)
ATM=Zg cos θg

(
+

(
1

Zg
+Rg

)
+

(
1

Zg
− Rg

)
e2iLgkg cos θg

)(
−

(
1

Zl
+Rl

)
+

(
1

Zl
− Rl

)
e2iLl kl cos θl

)

BTE=Zl cos θg

(
−

(
Rg
Zg

+1
)
+

(
Rg
Zg

− 1
)

e2iLgkg cos θg
)(

+
(

Rl
Zl

+1
)
+

(
Rl
Zl

− 1
)

e2iLl kl cos θl

)
BTM=Zl cos θl

(
−

(
1

Zg
+Rg

)
+

(
1

Zg
− Rg

)
e2iLgkg cos θg

)(
+

(
1

Zl
+Rl

)
+

(
1

Zl
− Rl

)
e2iLl kl cos θl

)

CTE
L =Zg cos θl

(
+

(
Rg
Zg

+1
)

e2iLgkg cos θg+
(

Rg
Zg

−1
))(

+
(

Rl
Zl

− 1
)

e2iLl kl cos θl −
(

Rl
Zl

+1
))

CTM
L =Zg cos θg

(
+

(
1

Zg
+Rg

)
e2iLgkg cos θg+

(
1

Zg
− Rg

))(
+

(
1

Zl
− Rl

)
e2iLl kl cos θl −

(
1

Zl
+ Rl

))

DTE
L =Zl cos θg

(
+

(
Rg
Zg

+1
)

e2iLgkg cos θg−
(

Rg
Zg

−1
))(

+
(

Rl
Zl

− 1
)

e2iLl kl cos θl +
(

Rl
Zl

+1
))

DTM
L =Zl cos θl

(
+

(
1

Zg
+Rg

)
e2iLgkg cos θg −

(
1

Zg
− Rg

))(
+

(
1

Zl
− Rl

)
e2iLl kl cos θl +

(
1

Zl
+ Rl

))

CTE
R = Zg cos θl

(
+

(
Rg
Zg

−1
)

e2iLgkg cos θg+
(

Rg
Zg

+1
))(

+
(

Rl
Zl

+1
)

e2iLl kl cos θl −
(

Rl
Zl

− 1
))

CTM
R =Zg cos θg

(
+

(
1

Zg
− Rg

)
e2iLgkg cos θg+

(
1

Zg
+Rg

))(
+

(
1

Zl
+Rl

)
e2iLl kl cos θl −

(
1

Zl
− Rl

))

DTE
R =Zl cos θg

(
+

(
Rg
Zg

−1
)

e2iLgkg cos θg−
(

Rg
Zg

+1
))(

+
(

Rl
Zl

+1
)

e2iLl kl cos θl +
(

Rl
Zl

− 1
))

DTM
R =Zl cos θl

(
+

(
1

Zg
− Rg

)
e2iLgkg cos θg −

(
1

Zg
+Rg

))(
+

(
1

Zl
+Rl

)
e2iLl kl cos θl +

(
1

Zl
− Rl

))

The parameter Zi = √
μi/εi, i = {g, l}, is the wave impedance,

which has been normalized to the free-space impedance Z0 =√
μ0/ε0. For normal incidence, i.e., ϑinc = 0 → ϑg = ϑl = 0

and Rg = Rl = 1, cosϑg = cosϑl = 1. With simple substitu-
tion it is easy to verify that the scattering coefficients of the
two polarizations become identical.

2. Condition for PT-symmetric phase and further examples

Previously, in order to clarify that the positions of the
exceptional points for TE and TM waves do not depend on the
magnitude of the wave impedance, but solely on the relative
strength between its real and imaginary part, we expressed ζg

and ζl in polar form. If, instead, we write the PT-symmetric
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FIG. 9. Universal phase diagram and phase transformations. The system of Fig. 5 with n = 2 ∓ 0.1i is examined here, where the ratio
|ζ ′′/ζ ′| is varied within the 0–1 range to demonstrate the phase transformations. Starting with |ζ ′′/ζ ′| = 0, the mixed phase gradually appears
with increasing |ζ ′′/ζ ′| and is subsequently suppressed until |ζ ′′/ζ ′| = 1, where it is again eliminated. According to our previous analysis in
terms of ζg = |ζ |e+iϕ and ζl = |ζ |e−iϕ , the initial and final stages of this parametric study meet the condition that ϕ is multiple of π/4, leading
the exceptional points of TE and TM waves to coincide and therefore the mixed phase to vanish.

ζ as ζg/l = ζ ′ ± iζ ′′, (ζ ′,ζ ′′: real quantities) then the cri-
terion |(rL − rR)/t | < 2 for residing in the PT-symmetric

phase as expressed in Eqs. (3a) and (3b) now takes the
form

TE :

∣∣∣∣
(

ζ ′ − iζ ′′

ζ ′ + iζ ′′
cos θg

cos θl
− ζ ′ + iζ ′′

ζ ′ − iζ ′′
cos θl

cos θg

)
sin(δg) sin (δl )

∣∣∣∣ < 2

TM :

∣∣∣∣
(

ζ ′ − iζ ′′

ζ ′ + iζ ′′
cos θl

cos θg
− ζ ′ + iζ ′′

ζ ′ − iζ ′′
cos θg

cos θl

)
sin(δg) sin (δl )

∣∣∣∣ < 2. (A2)

In this form it is easy to observe that, depending on the sign
of ζ ′ and ζ ′′, the positions of the exceptional points either
exchange between TE and TM waves or do not change at
all. Simply put, the range of the PT-symmetric, mixed, and
broken-PT phase remain the same regardless of the exact
sign of ζ ′ and ζ ′′, which only defines which of the two
polarizations crosses the EP first. Hence, all sign combina-
tions for ζ ′,ζ ′′ that yield the same |ζ ′′/ζ ′| ratio fall under the
same universal phase diagram. Additionally, with exchanging
ζ ′↔ζ ′′ the phase diagram is preserved, because we can restore
the initial Eqs. (A2) by multiplying each wave impedance ζ by
i. Hence, under the above transformations the positions of the
exceptional points are immobile and a certain phase diagram
may correspond to more than one wave impedance; however,
the magnitude of the eigenvalues λ

p
1,2 changes in general

within each broken-PT phase (in the symmetric-PT phase
|λp

1,2| = 1, i.e., all eigenvalues have the same magnitude).

To demonstrate these conclusions, in Fig. 8 we return to the
system of Figs. 4 and 5 with ng = 2 − 0.1i and nl = 2 + 0.1i
and examine the cases with (a) ζ ′ = 1, ζ ′′ = +0.1, (b) ζ ′ = 1,
ζ = −0.1, (c) ζ ′ = 0.1, ζ ′′ = +1, and (d) ζ ′ 0.1, ζ ′′ = −1.
These choices correspond to either |ζ ′′/ζ ′| = 0.1 or |ζ ′/ζ ′′| =
0.1 and provide therefore the same universal phase diagram,
which is shown in Fig. 8(a). The eigenvalues for each case are
shown in Figs. 8(b)–8(e) for ϑinc = 60◦, as denoted with the
dashed line in Fig. 8(a). Note that in all cases the magnitude
of ζg/l is the same. Indeed, as we mentioned in Sec. II C,
the positions of the exceptional points do not depend on the
magnitude of ζ , but solely on the relative strength between its
real and imaginary part.

Last, we examine how the mixed phases can be tuned
with changing the relative strength of ζ ′, ζ ′′. In Fig. 9 we
show the phase diagrams as the ratio |ζ ′′/ζ ′| increases from
0 to 1. For |ζ ′′/ζ ′| = 0 the mixed phase is absent, but with
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increasing |ζ ′′/ζ ′| ratio it gradually appears, then deforms to
become subsequently suppressed until |ζ ′′/ζ ′| = 1, where it
is completely eliminated. According to our previous analysis
in terms of ζg = |ζ |e+iϕ and ζl = |ζ |e−iϕ , the initial and final

stage of this parametric study meet the condition that ϕ is
multiple of π/4, leading the exceptional points of TE and
TM waves to coincide and therefore the mixed phase to
vanish.
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