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Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences
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We study two different scalar wave equations. One of them exhibits the main gross features of the
simple scalar and elastic wave propagation in periodic composite media. The other behaves similarly to
the electromagnetic waves in preferring the network topology and the higher volume fractions for devel-

oping spectral gaps.

There is recently an increased interest in the propaga-
tion of classical waves [electromagnetic (EM), acoustic
(AQ), elastic (EL)] in composite materials, both periodic
and random.' > The existence, in periodic media, of an
absolute frequency gap where the propagation of waves is
forbidden for every incidence direction, can have a pro-
found impact on several scientific and technical discip-
lines.! > Absolute gaps for EM waves propagating in
two- and three-dimensional, periodic, dielectric materials
have been investigated both experimentally>®~% and
theoretically.>°~ '3 In addition, the spatially localized de-
fect modes that can arise in the vicinity of a perturbation
of a periodic dielectric structure have been investigat-
ed.>*" It has also been suggested® > that if the periodic
composite material is disordered in such a way that it
remains periodic on average, it may be easier to observe
in it the localization of classical waves whose frequency is
close to an edge of an absolute gap of the corresponding
periodic composite material than it would be in a disor-
dered composite material which is homogeneous on aver-
age.

In most cases the systems under considerations were
binary composites (in many instances air was one of the
two components). The low propagation velocity com-
ponent will be called the scattering component (or ma-
terial), while the high propagation velocity component
will be referred to as the host material. The component is
characterized by several parameters. Among them the
most important are (i) the propagation velocity ratio
¢, /c, (for EL waves there are three velocity ratios, since
each material in general sustains both longitudinal and
transverse waves with different propagation velocities);
(ii) the volume fraction, f =V, /V, occupied by the
scattering material, where V is the total volume of the
composite; and (iii) the topology which for our purposes
can be classified either as a cermet topology (where the
scattering material consists of isolated inclusions each of
which is completely surrounded by the host material) or
as network topology (where the scattering material is
connected and forms a multiple self-intersecting continu-
ous network running throughout the whole composite).

The theoretical and experimental studies especially in
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the periodic case show that the EM waves behave
differently comparing with the simple AC or the EL
waves. The two main differences are the following: (i) for
simple scalar (acoustic) and elastic waves it seems that
the cermet topology is more favorable for spectral gap
creation than the network topology;'~ !¢ the opposite is
true for EM waves;! 121416 (ji) for simple scalar (acous-
tic) or elastic waves the optimum value of f for gap
creation seems to be in the range 0.09 to 0.20, while for
EM waves the range of optimum values of f is much
broader, sometimes extending to about 0.50 (the optimum
value of f depends also on the lattice structure).

One is tempted to connect these differences with the
vector character and in particular with the transverse vec-
tor character of the electromagnetic waves.'* As a result
of these the scattering from a single sphere lacks an iso-
tropic component, which, however, is present in both the
scalar and the elastic waves. An isotropic scattering will
be reinforced by a close-packed structure, which is con-
sistent with a cermet topology, while a strongly aniso-
tropic scattering may possibly favor the network topolo-
gy."* Another argument offered as a possible explanation
for the increased ability of the network topology to create
spectral gaps for EM waves is its supposedly unlimited
polarizability. However, the polarizability is limited by
the wavelength of the radiation which is comparable or
smaller than the dimensions of the primitive cell (in the
spectral gap regions); as a result of this the polarizability
argument does not seem to be convincing.'*

In this paper we analyze two different scalar wave
equations. One of the two exhibits the main characteris-
tics of the EM waves in spite of the fact that it is a scalar
equation. This provides strong evidence that the ex-
planation of the different behavior of the EM case is not
mainly connected with its transverse vector character,
but with the specific mathematical structure of the corre-
sponding differential equation

VX(e 'WXH)=(w?/c?)H . (1)

The first scalar equation we have studied is the ordi-
nary simple scalar equation:
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where v=uv, or v, in the scattering and the host com-
ponent, respectively, and o is the (angular) frequency of
the wave. The methods of numerical calculation are de-
scribed in Ref. 14. In Fig. 1(a) we show the threshold ra-
tio r2=(v?/v?), (above which a spectral gap opens up)
versus the volume fraction f (of the scattering, i.e., the
low-velocity component) for the cermet topology, i.e., for
isolated spheres of the scattering component forming face
centered (fcc) or body centered (bec) or simple cubic (sc)
periodic lattices. We see that the optimum values of f is
around 0.20 and that the minimum value of rC2 is 3, 3.3,
and 5.4 for fcc, bee, and sc, respectively. As shown in
Fig. 1(b) the network topology [where the host (high v)
material is now the spheres (overlapping or not, depend-
ing on f) and the scattering material occupies the space
among the spheres forming a continuous self-intersecting
network] is clearly less favorable than the cermet topolo-
gy of Fig. 1(a). Indeed, the minimum value of 77 is now
4.7 and 6.2 for fcc and sc, respectively.

In Figs. 2(a) and 2(b) we show corresponding results
but for the following wave equation:

V(v2V¢)=—w? , 3)
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FIG. 1. The threshold velocity ratio r2=(v? /v?), for the ap-
pearance of a spectral gap vs the volume fraction f of the low
velocity (v,) component for Eq. (2). (a) The v, component con-
sists of isolated spheres forming face-centered (fcc), body-
centered (bcc), and simple cubic (sc) lattices. (b) The ¢, com-
ponent consists of isolated spheres forming fcc or sc lattices.
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where again v =u,,v, for the scattering and host materi-
al, respectively. Apart from the vector character, Eq. (3)
is similar to the EM equation [Eq. (1)]. We see in Fig.
2(a) that for Eq. (3), the cermet topology is not so favor-
able for spectral gap appearance, since the minimum re-
quired value of r2 is about 9 as opposed to 3 for the cer-
met case of Eq. (2). On the other hand, the network to-
pology for Eq. (3) produces significantly lower values of
r? than the cermet topology: 4.5, 8 [see Fig. 2(b)] for fcc
and bcc as opposed to 9.5 and 9 for the corresponding
values of the cermet topology [Fig. 2(a)]. Furthermore,
the optimum value for f is considerably higher as com-
pared with those of Eq. (2) but they are comparable with
those of EM waves'"1214 [Eq. (1)]; in particular for fcc
the optimum f are 0.3 and 0.6 for the cermet and net-
work topologies respectively; for bcc structure the op-
timum f are 0.4 and 0.7 for the cermet and network topo-
logies, respectively. Thus Eq. (3) behaves similarly to the
EM equation regarding both its preference for the net-
work topology as well as higher optimum values of f
(close to 0.50). The sc structure seems to prefer the cer-
met topology, since there are not gaps for the network to-
pology, but the r2 in that case are extremely high (greater
than 13.5) so it does not seem to change the previous con-
clusion. Also, notice that for sc structure the cases with
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FIG. 2. The threshold velocity ratio r2 vs the volume frac-
tion f of the low velocity (v,) component for Eq. (3). (a) The v
component consists of isolated spheres forming fcc, bee, and sc
lattices. (b) The ¢, component consists of isolated spheres form-
ing fcc or bec lattices.
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FIG. 3. The total scattering cross section vs ka for a single
sphere of radius a and propagation velocity v; =v,/5 (a) or 5v,
where v,k are the propagation velocity and the wave number
of the surrounding material. The wave is described by Eq. (2).

f greater than 0.52 are belong to network topology and
the optimum f (=0.40) is close to that value. It must be
pointed out, that these differences between Egs. (2) and
(3) persist in two-dimensional systems as well.'”

A clue for the origin of these differences between Egs.
(2) and (3) may be come by considering the scattering
from a single sphere embedded in a uniform background
with propagation velocity vy. In Fig. 3 we show the total
scattering cross section for Eq. (2) (which corresponds to
the boundary conditions on the surface of the sphere,
both ¢ and d¢ /dr continuous). In Fig. 3(a) the propaga-
tion velocity inside the sphere v; =v,/5. This is the sin-
gle scatterer version of the cermet topology. We see that
the cross section is large on the average and in addition
exhibits very large resonances. In contrast, for the case
where v;,=5v, [Fig. 3(b)] the cross section is small
without any resonances. The conclusion from this com-
parison is that much stronger scattering is produced for
Eq. (2) if the high-velocity material surrounds the low-
velocity material than vice versa. Hence, Eq. (2) would
produce spectral gaps (in the periodic case) or localiza-
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FIG. 4. The same as Fig. 3, but the wave is described by Eq.
(3).

tion (in the random case) easier in the case of the cermet
topology than in the case of the network topology. Fig-
ure 4 shows that Eq. (3) (which corresponds to the bound-
ary conditions, both ¢ and v23¢/3r continuous) behaves
differently: In spite of the complicated resonance struc-
ture for the case where v; =v, /5 [Fig. 4(a)] the cross sec-
tion on the average is about the same as in the case where
v; =5v, [Fig. 4(b)] indicating that there is not any strong
dependence on the velocity of the surrounding material.
Thus one is led to expect that there is not any advantage
to the cermet topology and that a topology consisting of
two interpenetrating complicated networks (one for each
of the two components) of about equal volume fraction
may be closer to the optimum structure for Eq. (3) to de-
velop spectral gaps. Figure 2 as well as the data of Ref.
14 tend to support this suggestion.
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