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Spontaneous-relaxation-rate suppression in cavities with PT symmetry
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We compute the spontaneous relaxation rate of a two-level atom in a planar cavity with parity (P) and
parity-time (PT ) symmetry. We find that at the center of a PT -symmetric cavity the evanescent contribution
to the relaxation rate is greatly suppressed. As this is the dominant relaxation pathway for cavities smaller than
the transition wavelength, PT -symmetric microcavities are able to suppress the spontaneous relaxation rate
dramatically and, in some cases, reduce it to below the free-space level. The ability to reduce the relaxation rate
and lengthen the excited-state lifetime has many applications in quantum control and can, for example, be used
to increase atomic trapping times, improve photonic storage, and help maintain the coherence of atomic qubits.
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I. INTRODUCTION

In the conventional formulation of quantum mechanics,
Hermiticity was considered to be a necessary condition for
a Hamiltonian operator to exhibit a real spectrum of eigen-
values. Bender et al. [1–3] showed that a non-Hermitian
Hamiltonian Ĥ can possess real eigenvalues in a certain
region of parameter space if PT symmetry is preserved, i.e.,
[Ĥ, P̂T̂ ] = 0. A notable feature of these systems is the PT -
phase transition where, at some threshold value of a particular
order parameter, the eigenvalue spectrum ceases to be real and
the PT -symmetric phase is broken spontaneously. This leads
to a sudden change in the physical behavior of the system and
is the main experimental signature of PT -symmetric systems.

Although currently unobserved at a fundamental level,
PT -symmetric behavior has been simulated using classical
optics. The optical diffraction equation under the paraxial
approximation has the same form as the Schrödinger equation
[4,5] and, hence, certain optical systems are able to exhibit
many of the phenomenological features of quantum systems.
For example, Ruther et al. [6,7] observed PT -symmetric
behavior in a system of parallel waveguides with balanced
loss and gain. Here, the order parameter was the gain of
the amplifying waveguide. Below threshold, the propagating
light oscillated between the two waveguides as one would
expect from a traditional directional coupler. Above threshold,
the optical energy remained in the amplifying waveguide
and the coupled mode oscillations vanished. Studies of PT -
symmetric optical systems have revealed a wealth of novel
phenomena, including self-trapped solitons [8], coherent per-
fect absorption [9,10], unidirectional invisibility [11,12], and
nonreciprocal light propagation [13].
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Here, we consider whether the novel phenomenology of
PT -symmetric classical optics extends to quantum optical
systems. One unique feature of quantum electrodynamics, the
quantum field theory of electromagnetism, is the existence of
vacuum fluctuations. Although the expectation value of the
electric field operator in the vacuum vanishes, its variance is
nonzero. Thus, at any point in time, the local electric field may
be instantaneously finite. These fluctuations drive many non-
classical atomic processes such as Casimir-Polder shifts and
spontaneous relaxation rates [14]. Control of these processes
can be achieved by tailoring the vacuum fluctuations, which,
in turn, can be performed by engineering the local environ-
ment of the atom [15]. A two-level atom in an optical cavity
provides a classic example. If the atomic transition frequency
is resonant with the cavity frequency, the atom’s excited-state
relaxation rate will be enhanced. Conversely, if frequency is
off resonant with the cavity frequency, the relaxation rate will
be suppressed. Such suppression of the relaxation rate cannot
be achieved by direct repumping of the atom as the applied
field will induce Rabi oscillations in the system driving the
atom from the excited state back to the ground state. Hence,
cavities and cavity quantum electrodynamics are critical tools
in the control of atomic processes and, hence, play an im-
portant role in quantum control experiments. For example,
magnetic atom chips will trap atoms in a specific Zeeman
sublevel. Relaxation of the atom from the trapped state will
result in an antitrapped state and the atom will be expelled
from the trap [16–18]. Thus, to increase the trapping time, a
crucial limiting factor for many quantum control experiments,
suppression of the relaxation rate is highly desirable. Further-
more, the spontaneous relaxation rate is directly linked to the
underlying vacuum fluctuations and hence acts as a probe of
the nonclassical behavior of the vacuum. Thus, studies of this
type will illuminate whether a PT -symmetric environment
can affect processes that are uniquely quantum mechanical.
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Here, we study the spontaneous relaxation rate of a two-
level atom in a PT -symmetric cavity and compare the result
to those of a usual P-symmetric cavity. There have been a few
studies of PT -symmetric cavities before, e.g., Refs. [19,20],
but these studies have been semiclassical in nature with a
quantized two-level system and the cavity field treated clas-
sically. Here, we will treat the cavity in a fully quantum
mechanical way to see whether PT -symmetric effects are
observable in quantum processes as well as in classical and
semiclassical ones.

II. QUANTUM ELECTRODYNAMICS IN LINEARLY
RESPONDING MEDIA

A. Absorbing media

The electric field modes E(r, ω) in an absorbing medium
obey the inhomogeneous Helmholtz equation

∇ × μ−1(r, ω)∇ × E(r, ω) − ω2

c2
ε(r, ω)E(r, ω)

= iωμ0jN (r, ω), (1)

where ε(r, ω) and μ(r, ω) are the electric permittivity and
magnetic permeability tensors and

jN (r, ω) = −iωPN (r, ω) + ∇ × MN (r, ω) (2)

is the noise current density, with PN (r, ω) and MN (r, ω) the
noise polarization and noise magnetization fields, respectively
[21,22]. The noise current density acts as a Langevin noise
source which is related to the presence of absorption in the
medium. The solutions to Eq. (1) are given by

E(r, ω) = iωμ0

∫
d3r′G(r, r′, ω) · jN (r′, ω), (3)

where G(r, r′, ω) is the electromagnetic Green’s function,
which solves the Helmholtz equation for a point source
[21–23]

∇ × μ−1(r, ω)∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω)

= δ(r − r′). (4)

These electric field modes can be quantized by relating the
noise fields to a set of bosonic creation and annihilation opera-
tors f̂λ(r, ω) (λ ∈ e, m), which obey the bosonic commutation
relations

[f̂λ(r, ω), f̂†
λ′ (r′, ω′)] = δλλ′δ(r − r′)δ(ω − ω′), (5)

via the relations

P̂N(r, ω) = i

√
h̄ε0

π
Imε(r, ω) f̂e(r, ω), (6)

M̂N(r, ω) =
√

h̄

μ0π

Imμ(r, ω)

|μ(r, ω)|2 f̂m(r, ω). (7)

Hence, one can express the quantized field electric modes as

Ê(r, ω) =
∑

λ=e,m

∫
d3r′Gλ(r, r′, ω) · f̂λ(r′, ω), (8)

where the coefficients Gλ(r, r′, ω) are given by [21,22]

Ge(r, r′, ω) = i
ω2

c2

√
h̄

πε0
Imε(r′, ω)G(r, r′, ω) , (9)

Gm(r, r′, ω) = −i
ω

c

√
h̄

πε0

Imμ(r′, ω)

|μ(r′, ω)|2 [G(r, r′, ω) × ←−∇ ′].

(10)

Note that the form of the noise fields is chosen such that the
quantized field modes obey the fundamental field commuta-
tion relation

[Ê(r), B̂(r′)] = − ih̄

ε0
∇ × δ(r − r′). (11)

B. Amplifying media

The extension of the above quantization scheme to am-
plifying media was performed in Ref. [24] and was used to
study the impact of amplifying media on the Casimir force
in Ref. [25]. The response of amplifying media can be char-
acterized by a permittivity and a permeability with negative
imaginary parts. The other major change to the formalism is
that inside the amplifying medium, the roles of the creation
and annihilation operators switch places [26]. Hence, the
noise polarization operators take the form

P̂N(r, ω) = i

√
h̄ε0

π
|Imε(r, ω)|{�[Imε(r, ω)]f̂e(r, ω)

+�[−Imε(r, ω)]f̂†
e (r, ω)}, (12)

M̂N(r, ω) =
√

h̄

μ0π

|Imμ(r, ω)|
|μ(r, ω)|2 {�[Imμ(r, ω)]f̂m(r, ω)

+�[−Imμ(r, ω)]f̂†
m(r, ω)}, (13)

where �[x] is the Heaviside step function.
This simple extension of the quantum electrodynamics

formalism to amplifying media clearly has some limitations.
The formalism assumes that the amplifying medium is in
a quasistatic state. In practice, this requires the pumping
of the amplifying medium to be sufficiently strong and the
perturbations that are amplified to be sufficiently small that the
proportion of excited atoms in the medium to remain approxi-
mately constant. This is valid for the study of dispersion forces
as the photons involved in the interaction are (in principle)
virtual and hence no real transitions take place in the medium.
Similarly, with relaxation rates, the underlying interaction is
with the virtual photons of the vacuum fluctuations, although
in this case a real photon may be generated by the relaxing
quantum system. In real systems, however, it is not possible
to restrict all interaction as being purely virtual. In real gain
media, real incoherent photons will be radiated either by
spontaneous relaxation of the excited atoms or by a number of
spontaneous amplification processes which result in a vacuum
fluctuation resulting in the release of a real photon. In the
following, we will neglect the effects of these real photons
and concentrate on the vacuum effects that stem from the
geometry of the system.
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Here, we will study the relaxation of a single two-level
atom in a PT -symmetric cavity where one of the cavity
walls is amplifying. Thus, the interaction of the atom with the
amplifying cavity wall will be a virtual process. Furthermore,
we assume that the number of excited atoms in the cavity
wall is orders of magnitude greater than the single atom in
the cavity and hence will only negligibly perturb the state
of the amplifying cavity wall. Thus, the simple extension is
sufficient for the purposes at hand.

III. SPONTANEOUS RELAXATION OF A TWO-LEVEL
ATOM IN A CAVITY

Planar optical cavities with absorbing walls are tradition-
ally modeled as a three-layered medium with a central vac-
uum region containing the atom bounded by infinitely thick
material layers. In practice, the cavity walls will have a finite
thickness but, if they are thick enough, any feedback from the
outer interfaces of the cavity walls will have been damped
away by the time it returns to the central vacuum region and
hence will have negligible effect on the atom. For amplifying
media, this may not be the case as feedback from the outer
interfaces will be amplified by the wall rather than damped
and hence may have a non-negligible effect on the atom. For
this reason, we model the cavity as a five-layer medium.

Consider an atom in a planar cavity formed from a central
vacuum region of width L3 = Lc with refractive index n3 = 1,
bounded by an absorbing medium of finite thickness L2 = Lw

with refractive index n2 = nr + ini on the left and another
medium also with finite thickness L4 = Lw (amplifying in
a PT -symmetric system or an absorbing in a P-symmetric
system) with refractive index n4 = nr ± ini on the right. Note
that for the system to be either P- or PT -symmetric the
thickness of the cavity walls must be equal. The regions
outside the cavity walls are also assumed to be vacuum with
refractive index n1 = n5 = 1 (see Fig. 1). The origin of the
coordinate system is taken to be at the center of the cavity.

The spontaneous relaxation rate for the atom in the cavity
is given by [21]

� = 2π

h̄2 d · 〈0|Ê†(rA, ωA)Ê(rA, ωA)|0〉 · d, (14)

where d is the dipole moment matrix element of the atomic
transition and 〈0|Ê†(rA, ωA)Ê(rA, ωA)|0〉 is the variance of the
electric field mode operator in the vacuum at the location of

FIG. 1. Schematic of the planar cavity. Region 2 is absorbing,
whereas region 4 is absorbing for the P symmetry and amplifying
for PT symmetry. Regions 1, 3, and 5 constitute the vacuum.

the atom rA, with frequency equal to the atomic transition fre-
quency ωA. Expanding the electric field modes using Eq. (8)
for the case of a spherically averaged atomic dipole (i.e., the
dipole moment of the atom is not aligned in any specific
direction), the spontaneous relaxation rate reduces to [21,27]

� = A0{Tr[ImG0(rA, rA, ωA)] + Tr[ImGS (rA, rA, ωA)]},
(15)

where A0 = 2ω2
A|d|2/3h̄ε0c2 is a constant that contains the

details of the atomic transition. The first term in Eq. (15),
which is proportional to the vacuum Green’s function
G0(rA, rA, ωA), the solution to Eq. (4) in the vacuum, gives
the free-space relaxation rate �0. The second term in Eq. (15),
which is proportional to the scattering Green’s function
GS (rA, rA, ωA), the solution to Eq. (4) for electromagnetic
waves scattered by the cavity walls, gives the surface-induced
relaxation rate �S , which is the change in relaxation rate
owing to the presence of the cavity.

It is worth briefly commenting on the sign of �. In Eq. (14),
one has implicitly assumed that the atomic frequency ωA is
positive (i.e., the transition is from a higher-energy state to a
lower-energy state). However, it is possible for the atom to be
driven from a lower-energy state to a higher-energy state. This
can happen, for example, in a finite-temperature environment
when thermal photons can drive upward transitions. In such
cases, ωA is negative and one obtains an overall minus sign for
the relaxation rate. Hence, negative relaxation rates indicate a
situation where the atom is being driven from the ground state
to the excited state. If one solves the optical Bloch equations in
the interaction picture for the atom with a positive relaxation
rate and the constraints that the atomic populations cannot
exceed unity, σg � 1, σe � 1 and that the total population
must always be unity, σg + σe = 1, one obtains

σg = 1 − σe,0e−�t , (16)

σe = σe,0e−�t . (17)

Here, as t → ∞, the population relaxes to the ground state.
When one has a negative relaxation rate, the roles of the
ground and excited states swap and, hence, one finds

σg = σg,0e−�t , (18)

σe = 1 − σg,0e−�t , (19)

and, as t → ∞, the population relaxes to the excited state.
Using the expression for the appropriate Green’s function,

one finds that the spontaneous relaxation rate for a planar
cavity reduces to [22,23]

�S = A0

4π
Re

{∫ ∞

0
dk‖

k‖
kz,2

[
F s +

(
2k2

‖
k2

2

− 1

)
F p

]}
, (20)

where ki = ωni/c, k‖ is the transverse part of the wave vector,

kz,i =
√

k2
i − k2

‖ , and

Fα = [Rα
−e−ikz,2(2z−Lc ) + Rα

+eikz,2(2z+Lc ) + 2Rα
−Rα

+e2ikz,2Lc ]Mα
3

(21)
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with the generalized multilayer reflection coefficients Rα
± at

the Lc/2 and −Lc/2 boundaries reading as [23]

Rα
+ = Rα

34 + T α
34Rα

45T α
43Mα

4 e2ikz,4L4 , (22)

Rα
− = Rα

32 + T α
32Rα

21T α
23Mα

2 e2ikz,2L2 , (23)

with single-layer coefficients given by

Rs
i j = kz,i − kz, j

kz,i + kz, j
, Rp

i j = n2
j kz,i − n2

i kz, j

n2
j kz,i + n2

i kz, j
, (24)

T s
i j = 2kz,i

kz,i + kz, j
, T p

i j = 2n2
j kz,i

n2
j kz,i + n2

i kz, j
, (25)

and multiple reflection coefficients given by

Mα
i = [

1 − Rα
i,i+1Rα

i,i−1e2ikz,iLi
]−1

. (26)

The superscript α indicates the s (TE) and p (TM) polariza-
tions, respectively. It should be noted that the expression in
Eq. (20) coincides with that for classical dipole radiation in a
planar cavity as found previously in Refs. [28–31].

IV. EVALUATION OF THE k‖ INTEGRAL

To obtain an expression for the spontaneous relaxation rate,
one needs to perform the integral over the transverse part
of the wave vector in Eq. (20). For amplifying media, care
must be taken. The electric permittivity takes the form of
a Lorentzian response function and hence has poles in the
complex plane. As discussed by Skaar [32–34], to obtain a
physically valid result one must integrate along the branch of
the complex plane that lies above these poles. For absorbing
media, the poles lie below the real axis and one can integrate

along the real axis in a straightforward way. For amplifying
media, the poles lie above the real axis and, hence, one
must deform the contour of integration so it passes above
them. This leads to a contour along which Im[kz] > 0 for
k‖ > ω

√
ε/c and, hence, the evanescent waves decay away.

The physical interpretation for this relates to the mechanism
by which gain is generated in the amplifying medium. Gain
is achieved by creating a population inversion of a particular
atomic transition with amplification achieved via stimulated
emission. The evanescent field can cause stimulated emission,
but the released photon is a propagating one. Therefore, in
the presence of an evanescent field, the medium amplifies the
associated propagating mode rather than the evanescent field
itself and, hence, the evanescent field should still decay into
the amplifying medium.

The deformed contour also has an extra contribution from
the pole itself. This contribution is divergent. This divergence
is an artifact of the idealized nature of the system and stems
from the wave vector at kz = 0. This wave propagates along
the surface of the amplifying material and, as the material
is both unbounded in the transverse direction and does not
feature gain saturation, leads to infinite amplification. In a real
physical system the boundedness of the cavity wall and the
ability of the gain to saturate will mean that this contribution
will not actually diverge. However, as this mode is traveling
in the transverse direction and not into the cavity, it will have
a minimal influence on the atom. Hence, this contribution is
negligible.

A further issue with the evaluation of the transverse wave-
vector integral relates to the interpretation of the multiple
reflection coefficient Mα

i in amplifying media. The traditional
interpretation of Mα

i can be seen by expanding it as a Taylor
series

[
1 − Rα

i,i+1Rα
i,i−1e2ikz,iLi

]−1 = 1 + Rα
i,i+1Rα

i,i−1e2ikz,iLi + Rα
i,i+1Rα

i,i−1e2ikz,iLi Rα
i,i+1Rα

i,i−1e2ikz,iLi + · · · . (27)

Each term relates to an optical path that scatters off a certain
number of interfaces before being transmitted out of the slab.
In absorbing media, owing to the positive imaginary part of
the refractive index, the exponential factor decays away and,
hence,

Rα
i,i+1Rα

i,i−1e2ikz,iLi < 1. (28)

Thus, the series always converges. In amplifying media, the
negative imaginary part of the refractive index causes the
exponential factor to grow and, if the gain is large enough and
the reflection coefficients are close enough to unity, then

Rα
i,i+1Rα

i,i−1e2ikz,iLi > 1. (29)

In this case, although the closed-form expression for Mα
i is

finite, the series does not converge. The last case is where

Rα
i,i+1Rα

i,i−1e2ikz,iLi = 1. (30)

Here, both the closed-form expression and series expansion
of Mα

i diverge. This last case is the point where the gain is
sufficiently large that the amplitude of the electromagnetic

wave returns to the same value after one round trip despite
losses owing to transmission through the interfaces. This
marks the onset of lasing and is known as the lasing threshold.

There is still some debate about how to interpret Mα
i

above the lasing threshold. Certain authors have stated that
although the series diverges, the closed-form expression for
Mα

i is still valid [35], while others state that it is not [36].
Others have suggested that convergence of the series can come
from inversion of the Poynting vector [37] or have proposed
upper bounds to the reflection coefficients [38]. Physically,
any amplifying medium will be subject to gain saturation at
very high field amplitudes owing to the inability to maintain
the population inversion. Gain saturation is a nonlinear effect
which is not included in the simple model of amplifying media
used here. Furthermore, such a situation violates the assump-
tion that the amplifying medium is quasistatic, an assumption
that was used to formulate the quantum electrodynamical field
theory in amplifying media in Sec. II B. For this reason, we
will restrict ourselves to gains below the lasing threshold
where both the closed form and series expansion of Mα

i are
valid.
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V. ASYMPTOTIC SOLUTIONS

The integral in Eq. (20) can be split into two parts. In the
interval 0 < k‖ � ki, kz,i is real. This describes a propagating
field. In the interval ki < k‖ � ∞, kz,i is imaginary. This
describes an evanescent field. Thus, the total relaxation rate
is the sum of three contributions: the propagating part and
the evanescent part of the scattering relaxation rate, which
originates from the second term in Eq. (15), and the free-
space relaxation rate, which originates from the first term
in Eq. (15). In general, one cannot solve the integral in
Eq. (20) analytically. However, in certain limits one can obtain
analytical approximations that are useful in illuminating the
asymptotic physics of the system.

A. Large cavities

For large cavities, where the distance from the atom to the
cavity wall is z � c/ωA, one can integrate the Green’s func-
tion using the method of stationary phase. In this approxima-
tion, only the propagating part of the integral is computed and
the evanescent part neglected. At the stationary phase point at
k‖ = 0, kz,i → ki = ωni/c and the single-layer reflection and
transmission coefficients simplify to

Rs
i j ≈ ni − n j

ni + n j
, Rp

i j ≈ n j − ni

ni + n j
, (31)

T s
i j ≈ 2ni

ni + n j
, T p

i j ≈ 2n j

ni + n j
, (32)

and

Mα
i ≈ [

1 − Rα
i,i+1Rα

i,i−1e2ikiLi
]−1

. (33)

This leads to

Rs
− = −Rp

− =
(
1 − n2

2

)
sin[k2Lw]

2in2 cos[k2Lw] + (
1 + n2

2

)
sin[k2Lw]

, (34)

Rs
+ = −Rp

+ =
(
1 − n2

4

)
sin[k4Lw]

2in4 cos[k4Lw] + (
1 + n2

4

)
sin[k4Lw]

. (35)

Integrating the exponential factors of the Green’s function
to leading order in z leads to

�S = A0
|M3|
2π

[
|R−| sin

[
ω
c (2z − Lc) − θ− − θM3

]
(2z − Lc)

+ |R+| sin
[

ω
c (2z + Lc) + θ+ + θM3

]
(2z + Lc)

]
, (36)

where |R±| and θ± are the magnitude and argument of the
generalized reflection coefficients and |M3| and θM3 are the
magnitude and argument of the multiple scattering coefficient
within the cavity. For a P-symmetric cavity |R+| = |R−| and
θ+ = θ− whereas in a PT -symmetric cavity |R+| = |R−| and
θ+ = −θ−. Thus, the difference between the two cavities is
limited to a slight suppression of the relaxation rate owing
to the change in the interference between the two terms in
Eq. (36).

B. Small cavities

For small cavities, where the distance from the atom to the
cavity wall is z  c/ωA, one can expand kz as

kz,i =
√

k2
i − k2

‖ ≈ ik‖ + O

(
k2

i

2k2
‖

)
. (37)

This approximation only computes the evanescent part of
the integral and the propagating part is neglected. In this
case, single-layer reflection and transmission coefficients
simplify to

Rs
i j ≈ 0, Rp

i j ≈ n2
j − n2

i

n2
i + n2

j

, (38)

T s
i j ≈ 1, T p

i j ≈ 2n2
j

n2
i + n2

j

, (39)

and

Mα
i ≈ [

1 − Rα
i,i+1Rα

i,i−1e−2k‖Li
]−1

. (40)

This leads to

Rp
− =

(
1 − n4

2

)
sinh[k2Lw]

2n2
2 cosh[k2Lw] + (

1 + n4
2

)
sinh[k2Lw]

, (41)

Rp
+ =

(
1 − n4

4

)
sinh[k4Lw]

2n2
4 cosh[k4Lw] + (

1 + n4
4

)
sinh[k4Lw]

, (42)

and Rs
+ = Rs

− = 0. Treating the approximate generalized re-
flection coefficients above as complex numbers with a mag-
nitude and an argument and expanding the multiple reflection
coefficient in the cavity M p

3 as an infinite series and integrating
each term to leading order in k‖ leads to

�S = A0
c2

πω2

∞∑
j=0

{
|R+| j |R−| j+1 sin[ jθ+ + ( j + 1)θ−]

[(2 j + 1)Lc − 2z]3

+ |R+| j+1|R−| j sin[( j + 1)θ+ + jθ−]

[(2 j + 1)Lc + 2z]3

}
. (43)

As |R+| = |R−| and θ+ = −θ− in the PT -symmetric case,
the evanescent contribution to the relaxation rate vanishes
identically at the cavity center (z = 0). Thus, the main con-
tribution to the relaxation rate in small cavities is completely
suppressed. The reason for the suppression is that the phase
shift of the reflected wave at each end of a PT -symmetric
cavity is equal and opposite and, hence, there is complete
destructive interference of the reflected waves at the center
of the cavity.

VI. NUMERICAL RESULTS

Experimental realization of PT -symmetric classical op-
tical systems has already been achieved using iron-doped
lithium niobate waveguides [6]. The system was driven by
an Ar+ laser at 514.5 nm. Absorption in the system was
provided by iron dopants and the gain by a two-wave mixing
process in the lithium niobate driven by a separate pump beam
[39–41]. This allowed the absorption and gain parameters to
be varied by changing the iron dopant concentration and pump
beam intensity, respectively. A similar setup can be used
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to create a PT -symmetric planar cavity with a pump beam
providing gain for one of the cavity walls and iron doping
enhancing the absorption of the other. The active frequency
of this cavity (514.5 nm) is close to the magnesium 3s4s →
3s3p transition frequencies, 516.7 nm, 516.3 nm, 518.4 nm
for the final-state angular momentum of J = 0, 1, and 2,
respectively, and, hence, one would be able to observe the
PT -symmetric properties of the cavity with this atom. The
three magnesium 3s4s → 3s3p lines are all persistent with
relative intensities of 12, 40, and 70 compared to 1000 for the
brightest transition (3s2 → 3s3p), and are comparable to the
second brightest persistent line which has a relative brightness
of 80 (3s4p → 3s3d) [42]. Furthermore, magnesium atoms
have been successfully trapped using magneto-optical traps
[43,44].

Using the above parameters with nr = 2.33 (the refractive
index of lithium niobate at 514.5 nm), we numerically inte-
grate the Green’s function to find the spontaneous relaxation
rate within a P- or PT -symmetric cavity. For the wall thick-
ness we use Lw = 1000λ where λ is the vacuum wavelength.
The Lasing threshold can be estimated from [45]

ni ≈ λ

4πLw

lnR+R−, (44)

which for the parameters above is on the order of ni ≈ 10−4.
Far below the lasing threshold, the wall thickness Lw only
weakly affects the relaxation rate as the propagation excita-
tion that propagates through is not sufficiently amplified for
any reflection from the outer interface of the cavity wall to
have a strong effect. As one approaches the lasing threshold,

FIG. 2. The spontaneous relaxation rate in P- (blue) and PT -
(red) symmetric cavity. Here, n2 = n4 = 2.33 + 10−6i and n2 =
n∗

4 = 2.33 + 10−6i for the P- and PT -symmetric cavities, respec-
tively. The width of the cavity is Lc = λ/2. The vertical gray lines
indicate the location of the cavity walls and the horizontal black
dashed line indicates the free-space relaxation rate.

FIG. 3. The spontaneous relaxation rate at the center of the
cavity for (a) P-symmetric cavity with n2 = n4 = 2.33 + 10−6i,
and (b) PT -symmetric cavity with n2 = n∗

4 = 2.33 + 10−6i. The
horizontal black dashed line is the free-space relaxation rate.

the cavity wall thickness begins to have a stronger effect
on the relaxation rate. However, as previously discussed in
Sec. IV, as one approaches the lasing threshold the simplified
description of the gain medium becomes less accurate and,
hence, any result taken in this regime must be interpreted with
care.

Figure 2 shows the spontaneous relaxation rate for a planar
microcavity with width Lc = λ/2 and an absorptionor gain
coefficient of ni = 10−6. For the P-symmetric cavity, the
spontaneous relaxation rate increases as the atom nears the
walls. This is owing to the increase in the nonradiative decay
to the absorption modes in the material. Hence, the presence
of absorbing cavity walls leads to short excited-state lifetimes.
In the PT -symmetric cavity, close to the gain medium the
spontaneous relaxation becomes negative. As discussed in
Sec. III, this implies that the atom is pumped by the amplified
field, leading to upward atomic transitions. The phase shifts
of the evanescent field reflected from the gain and absorbing
media are equal and opposite and so destructively interfere
near the center of the cavity.

Figure 3 shows the variation in the spontaneous relax-
ation rate at the center of the cavity as a function of cavity
width for the P-symmetric [Fig. 3(a)] and PT -symmetric
[Fig. 3(b)] cavities. The important detail to note is that, for
the P-symmetric cavity, the evanescent contribution to the
spontaneous relaxation rate increases as the cavity width
decreases and, for cavities smaller than a wavelength, is the
dominant relaxation pathway. For a PT -symmetric cavity, the
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FIG. 4. The spontaneous relaxation rate at the center of the cavity
as a function of ni. Here, n2r = n4r = 2.33 and n2i = |n4i|. The width
of the cavity is L = λ/2. The horizontal black dashed line is the free-
space relaxation rate.

evanescent contribution vanishes for all cavity widths. Hence,
the major contribution to the spontaneous relaxation rate in
small cavities is completely suppressed.

Figure 4 shows the spontaneous relaxation rate at the center
of the microcavity with width Lc = λ/2 as a function of
the gain or absorption parameter, ni = Im[n4], of the right-
hand cavity wall. At ni = 0, there is a sudden change in the
spontaneous relaxation rate as the system changes from a
PT -symmetric system to P-symmetric system. Although this
distinct change in the phenomenology of the cavity is not
caused by a PT -phase transition (the PT phase is not broken
spontaneously at ni = 0, T symmetry is broken explicitly), it
shows a sharp phenomenological change in the behavior of the

system and distinguishes the P- and PT -symmetric cavities
and would be a distinct experimental signature.

The reason for the sudden discontinuity, rather than a
smooth transition, is the sudden breaking of T symmetry at
ni = 0. In the PT -symmetric regime, the phase shift at each
side of the cavity is always equal and opposite for all ni <

0 and, hence, the vacuum fluctuations undergo destructive
interference at the center of the cavity and the evanescent
contribution of the relaxation rate vanishes. At ni = 0, T
symmetry is broken and in the P-symmetric regime the phase
shift at each side of the cavity is equal for all ni > 0 and,
hence, the vacuum fluctuations at the center of the cavity
experience a change from destructive interference to construc-
tive interference and one observes a discontinuous jump in
the relaxation rate. It is important to note that the real part
of the refractive index is not changing so the relaxation rate
will not go smoothly to zero (the cavity does not vanish,
only the gain or loss characteristics change). One can see this
phenomenology in Eq. (43) where, at the center of the cavity,
the expression reduces to a pair of Fourier sine series which
describe a sudden step transition at ni = 0.

VII. SUMMARY

Here, we have shown that a PT -symmetric planar cavity is
able to suppress the spontaneous relaxation rate of a two-level
atom below the vacuum level. Suppression of the spontaneous
relaxation rate is useful in many areas of quantum control
where increase of the excited-state lifetime is required. Such
situations include atom traps where only specific states are
trapped or quantum computation applications where main-
taining the excited states is required for the realization of
long-lasting qubits.
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