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Supplementary Methods 

Introduction 
The foundation of our classification of materials lies in equation (1) of the main text, 
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which provides the dissipated power fraction of the metamaterial element. In this section, 
we derive this expression. We consider metamaterials that consist of conducting elements 
of subwavelength dimensions. A typical example of such an element is depicted in 
Supplementary Figure 1 in the form of an SRR for illustrative purposes, but the analysis 
below does not depend on the exact shape. 

Derivation of the circuit equation 
We start the derivation of the circuit equation from Faraday’s law in integral form: 

 dd d .
dt

⋅ = − ⋅∫ ∫∫E l Β S  (S2) 

 
We choose the path of the contour integral along an electric field line in the conductor 
closed by an electric field line in the gap (see Supplementary Figure 1). The left-hand side 
of the above equation can be readily shown to equal the sum of the voltage across the 
resistor formed by the metallic element and the voltage across the capacitor formed by the 
gap: 
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Supplementary Figure 1 | A quasistatic metallic circuit. The curved lines are electric field lines 
along which the contour integral in equation (S2) must be integrated. The field lines follow the 
current density in the metal and the displacement field in the gap. 
 
The right-hand side of equation (S2) contains a contribution from the incident field as well 
as a contribution from the magnetic field generated by the current in the circuit: 

 inc circuit
d d dd d d .
d d dt t t

− ⋅ = − ⋅ − ⋅∫∫ ∫∫ ∫∫Β S Β S Β S  (S4) 

Because the circuit is smaller than the wavelength, we can assume the incident magnetic 
field is constant over the circuit, such that the contribution from the incident field equals 
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where A is the area enclosed by the circuit and H0 is the magnetic field amplitude of the 
incident wave. 
 
What remains is the contribution from the magnetic induction field generated by the current 
in the circuit. Again in the quasistatic approximation and after a second differentiation with 
respect to time, this leads to the circuit equation with the self-inductance term: 

 ( )
2 2

0 02 2

d d 1 d d cos( ) .
d d d d

I IL R I H t
t t C t

A
t

μ ω+ + = − = −E  (S6) 

This is Kirchoff's equation describing the electrical current, I, flowing in the metallic circuit 
of each meta-atom, driven by the external time-dependent magnetic field of an incident 
electromagnetic wave. A is the area enclosed by the circuit, H0 the magnetic field amplitude 
of the incident wave, and ω the frequency of the incident wave. The inductance, L, and 
capacitance, C, must be interpreted as effective values that encompass coupling between 
neighbouring circuits24. The right-hand term in equation (S6) is of course nothing else than 
the electromotive force, Ԑ, induced in the circuit by the incident field.  Solving this equation 
yields a Lorentzian response function with a resonance at frequency ω0 = 1/ LC and 
damping factor γ = R/L. If we now make the circuit from a conductive material with 
increasingly high conductivity, the resistance, R, becomes smaller and the damping factor 
goes to zero. The consequence is that the dissipated power at the resonance frequency 
becomes arbitrarily large, even larger than the power in the incident plane wave, which is 
clearly unphysical. 
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The reason behind this “dissipated power catastrophe” is that equation (S6) neglects that 
the circuit radiates energy away. The radiated power imposes a finite broadening of the 
resonance—even if the conducting material becomes (almost) lossless. To include radiation 
effects, we have to take a second look at the contribution of the circuit current to the 
electromotive force. 
To that purpose, we start from the vector potential, A, which takes the following form in 
the Lorentz gaugeS1: 
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Converting to the frequency domain, the vector potential takes the form 
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where k0 = ω/c is the free-space wave number and c is the speed of light in vacuum. The 
integral is over all currents, i.e., over the conducting medium. The magnetic induction field 
generated by the circuit currents can be obtained from = ∇×B Α :  
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Since the conducting element is of subwavelength dimensions, all currents in the circuit are 
confined in a region sufficiently smaller than a wavelength, i.e. 0' 2 / kπ−r r . This allows 
approximating the exponential function in equation (S9) by the first terms of its Taylor 
expansion in ik0. The lowest-order term yields 
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This is Biot-Savart’s expression for the quasistatic field solution. It gives rise to the self-
inductance term in the circuit equation and Neumann’s formula for the self-inductanceS2. 
The higher-order terms in (ik0)m are 
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The first-order term (m = 1) vanishes. The second-order term (m = 2) is an imaginary 
number and, thus, results in a reactive contribution to the impedance of the circuit. It will 
merely alter the resonance frequency of the circuit slightly. The third-order term is real and 
results in a resistive contribution to the impedance of the circuit. This is the term we need. 
In a sufficiently lossy circuit, this term can be neglected with respect to the voltage across 
the conductor. However, if we let the resistivity of the conducting medium become 
sufficiently small, the m = 3 term must be taken into consideration, since it becomes the 
leading term in the resistive part of the circuit impedance. 
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The third-order term yields 
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with m the magnetic dipole moment of the circuit, and the electromotive force generated by 
this field becomes 
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where A is the area enclosed by the circuit. With this additional term, we arrive at the 
circuit equation that includes the effects of the radiation reaction on the circuit: 
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where the radiation resistance is given by 
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One can verify that this expression for the radiation resistance is the same as the radiation 
resistance of a subwavelength antenna as determined from the radiated power in the far-
field zoneS1. 
 
We have omitted here the magnetic fields from neighbouring circuits in the metamaterial. 
These neighbouring circuits will have mainly two consequences: there will be mutual 
coupling between the magnetic fields and there may be local field effects. Both effects have 
been studied by Gorkunov et al.24, who show they lead to (i) a renormalization of the circuit 
parameters and (ii) the emergence of a Clausius-Mosotti functional form of the 
permeability. The result is that the resonance slightly differs from the Lorentzian shape and 
that the resonance frequency shifts somewhat. We can neglect these effects here in our 
comparison of conducting materials, because they are material-independent and will not 
affect the relative difference between materials. 

Derivation of the magnetic susceptibility and the dissipated power 
The circuit equation can be most easily solved in the frequency domain: 
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Solving this equation for the induced current in the circuit yields 
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Each circuit has a magnetic dipole moment m = A x I, and a metamaterial with N circuits 
per unit volume (N = 1/Vuc, where Vuc is the volume of a unit cell) has therefore a 
susceptibility of 
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Introducing the filling factor 
 2

0 / ,F A N Lμ=  (S19) 

the susceptibility can be cast in the more customary form 
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The power dissipated by a single circuit can be found from the Ohmic heat formula: 
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Note, the dissipated power function broadens by the radiation resistance, but the radiated 
power itself is not a dissipation loss—it is, in fact, a much desired effect, since the radiated 
waves of all the circuits eventually combine to form the electromagnetic waves of the 
negative-permeability metamaterial. The optical power of the incident wave per unit cell 
equals 
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where aE, aH, and ak are the lattice constants along the electric field, the magnetic field, and 
the wave vector of the incident wave, respectively. 
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Combining equations (S21) and (S22), we eventually find the ratio of the dissipated power 
to the incident power: 
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Introduce dimensionless frequency 
Finally, we introduce dimensionless variables to make the expressions independent of the 
frequency band of interest. This is achieved by normalizing the frequency to the geometric 
resonance frequency: 
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In this way, the susceptibility can be written as 
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and the dissipated power fraction as 
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Introduce the dimensionless variables ζ, ξ, and β 
At finite frequencies, the resistivity and, hence, the resistance, R, are complex quantities, 
due to the finite mass of the charge carriers. Therefore, we define two variables, for the real 
and the imaginary part of the resistance, respectively: 
 
• Dissipation factor: 
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• Kinetic inductance factor: 
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• Radiation loss parameter: 
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In terms of these dimensionless parameters, the susceptibility and dissipated power loss 
fraction are 
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and 
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The dissipation factor ζ is a dimensionless quantity determining the dissipative loss. This is 
discussed in the main text (figure 1) and forms the basis for our classification of conducting 
materials for use in resonant metamaterials. 
 

 

Supplementary Figure 2 | Frequency redshift in a metamaterial with F = 0.37 and τ = 0.039; 
quantities are calculated for the slab-wire pair of figure 2a.  a, Contour plot indicating how much 
the frequency at which μ(ω) = –1 is redshifted due to the kinetic inductance effect and the 
dissipation factor. The contour lines are approximately vertical, signifying that the resonance 
frequency depends only on the kinetic inductance factor to good approximation. The white region is 
the cut-off region where the resonance is too shallow to obtain negative permeability μ(ω) = –1.  
b, Resonance shapes of the magnetic permeability for kinetic inductance factors ξ = 0.01 and 
ξ = 0.3. The dissipation factor was taken as ζ = 0.02. The strength of the resonance is almost 
unaltered by the kinetic inductance. 
 
The kinetic inductance factor determines the saturation of the resonance frequency of 
negative-permeability metamaterials when they are scaled down towards optical 
frequencies33,31. This effect is due to the contribution of the kinetic inductance of the free 
electrons or, in other words, to the mass inertia of the charge carriers. This is a material 
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effect and should be reflected in our model. To this end, we plot in Supplementary 
Figure 2a the frequency at which the desired magnetic permeability (μ = –1) is realized as a 
function of the parameters ζ and ξ. First, the plot reveals that the frequency is essentially 
independent of the dissipation factor ζ.  When the kinetic inductance factor is small, the 
resonance occurs at approximately ω = ω0 and the frequency at which μ = –1 is slightly 
larger. If the kinetic inductance factor is increased to a value of the order of unity, the 
resonance frequency is moved to smaller values (and the width of the negative permeability 
band decreases). This effect is confirmed by the permeability graphs in Supplementary 
Figure 2b. 

 

8	 nature photonics | www.nature.com/naturephotonics

supplementary information doi: 10.1038/nphoton.2012.27

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 



9 

 

Supplementary Figures and Table 

 

 

Supplementary Figure 3 | Surface conductivity of charge-neutral graphene from 
reference 36. Blue, dash-dotted line: real part of the surface conductivity (measured and fitted 

curves coincide). Red line: measured imaginary part of the surface conductivity. Blue, dashed lines: 
fitted curves representing an upper and lower bound to the measured data for the imaginary part of 

the surface conductivity. 
 

 

Supplementary Figure 4 | Surface plasmon polaritons on graphene and gold. The results for 
gold are for a 30 nm thick film at room temperature. The results for graphene are for strongly biased 
graphene calculated from experimental conductivity data (from ref. 36) and calculated from 
theoretical conductivity data that incorporates electron-electron interactions (from ref. 42). a, The 
wavelength of a surface plasmon polariton on graphene. Around 30 THz, the wavelength of SPPs 
on graphene is much smaller than the free-space wavelength λ0 = 2πc/ω. This is an immediate 
consequence of the large kinetic inductance of graphene as quantified by the kinetic inductance 
factor shown in figure 2c. b, Lateral confinement (away from the surface) of surface plasmon 
polaritons. The high kinetic inductance of graphene results in very good confinement with sub-
micrometer decay length at mid-infrared frequencies. 
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Supplementary Table 1 | Plasma frequency, collision frequency, and resistivity of the metals 
and conducting oxides shown in figure 5. The numbers between parentheses refer to the 
literature where the data were obtained from; the quantities without references have been derived 
by us. We note again that the collision frequency includes all possible scattering mechanisms and is 
therefore frequency-dependent. The following labels are used to indicate the frequency/wavelength 
at which the data are evaluated: GHz (1 GHz), IR (1.55 μm), and VIS (500 nm). 

 ωp (Trad/s) Γ (THz) Re(ρ) (Ωm) 

Ag (GHz) 13634 (S3) 26.6 1.62E-08 (S4) 
Ag (IR) 13634 (S3) 28.8 1.75E-08 (S5) 
Ag (VIS) 13634 (S3) 131 7.99E-08 (S5) 
    
Al (GHz) 24001 (S3) 138 2.71E-08 (S6) 
Al (IR) 24001 (S3) 321 6.30E-08 (S5) 
Al (VIS) 24001 (S3) 930 1.82E-07 (S5) 
    
Au (GHz) 13697 (S3) 37.5 2.26E-08 (S4) 
Au (IR, Ordal) 13697 (S3) 81.4 4.90E-08 (S6) 
Au (IR, J&C) 13697 (S3) 125 7.54E-08 (S5) 
Au(VIS) 13697 (S3) 7095 4.27E-06 (S5) 
    
AZO (GHz) 1602 (S7) 11364 5.00E-04 (S8) 
    
Be (GHz) 28023 (S3) 257 3.70E-08 (S4) 
    
Cr (GHz) 6911 (S9) 13.2 (S9) 3.12E-08 
Cr (IR) 6911 (S9) 1087 2.57E-06 (S10) 
Cr (VIS) 6911 (S9) 403 9.53E-07 (S11) 
    
Cu (GHz) 16399 (S3) 40.8 1.71E-08 (S4) 
Cu (IR) 16399 (S3) 253 1.06E-07 (S5) 
Cu (VIS) 16399 (S3) 5803 2.44E-06 (S5) 
    
ITO (GHz+IR) 1602 (S12) 145 (S12) 6.37E-06 
    
K (GHz) 5648 (S3) 20.9 7.39E-08 (S4) 
K(IR) 5648 (S3) 29.1 1.03E-07 (S11) 
K(VIS) 5648 (S3) 145 5.15E-07 (S11) 
    
KAu (GHz) 2339 (S13) 34.0 7.01E-07 (S13) 
KAu (IR) 2339 (S13) 36.0 7.42E-07 (S13) 
KAu (VIS) 2339 (S13) 84.8 1.75E-06 (S13) 
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Supplementary Table 1 | Continued. 

 ωp (Trad/s) Γ (THz) Re(ρ) (Ωm) 

Li (GHz) 9738 (S14) 79.5 9.47E-08 (S4) 
Li (IR) 9738 (S14) 209 2.49E-07 (S11) 
Li (VIS) 9738 (S14) 691 8.23E-07 (S11) 
    
LiAg (GHz) 11060 (S13) 82.1 7.58E-08 (S13) 
LiAg (IR) 11060 (S13) 438 4.04E-07 (S13) 
LiAg (VIS) 11060 (S13) 764 7.05E-07 (S13) 
    
Na (GHz) 8168 (S15) 28.8 4.88E-08 (S4) 
Na (IR) 8168 (S15) 50.1 8.48E-08 (S13) 
Na (VIS) 8168 (S15) 174 2.94E-07 (S13) 
    
Pd (GHz) 8293 (S6) 65.4 1.07E-07 (S4) 
    
Pt 7791 (S6) 56.0 (S6) 1.04E-07 
    
ZrN (IR) 11812 (S16) 70.3 (S16) 5.69E-08 
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