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Abstract. The finite difference time domain (FDTD) method has been
proved recently an excellent tool for the study of classical wave propagation
in periodic and random composite systems. Here we present in detail the
method as it is applied in the case of acoustic and elastic wave propagation
in two-dimensional composites. Also, we present some representative results
of the method and we discuss its advantages.

1. Introduction

The propagation of acoustic (AC) and elastic (EL) waves in periodic media
has been recently a problem of considerable interest [1-16]. This inter-
est stems mainly from the fact that acoustic and elastic periodic media
(phononic crystals) were found to exhibit, in a lot of cases, wide spectral
gaps in their spectrum, gaps much lager than those observed in photonic
crystals. This possibility of creating large gaps, which is given mainly by
the variety of parameters controlling the AC and EL wave propagation
in a composite system (densities, velocities), makes them very useful for
the study of general question related with the wave propagation, such as
the disorder induced localization of the waves. Additional reasons for the
interest on the AC and EL wave propagation study are a) the possible
applications of the AC and EL band gap materials (e.g. in filter and trans-
ducer technology); b) the rich physics of the AC and EL waves which stems
from the variety of parameters controlling their propagation, the full vector
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character of the elastic waves and their scattering induced mode conversion
(transformation of longitudinal wave to transverse and vice versa); and c)
the ease in the fabrication of the AC and EL band gap structures. This
ease is due to the fact that the characteristic structure lengths for gaps in
the ultrasound regime are of the order of mm.

Among the methods which have been developed for the study of the
AC and EL wave propagation in periodic composites the most widely used
is the so called Plane Wave (PW) method [2-11]. PW is based on the
expansion of the periodic coefficients in the wave equation and the periodic
field amplitude in Fourier sums. The method, which can calculate very
easily the band structure of infinite periodic systems and (in combination
with a supercell scheme) in systems with isolated defects, has been used in
most of the existing theoretical studies on AC and EL wave propagation.
PW, however, presents some inefficiencies in the study of propagation in
composites consisting of components with different phase (fluids in solids or
solids in fluids) or composites with strong contrast in the elastic parameters
of their components (the finite Fourier sums that approximate the elastic
parameters in these composites do not succeed to describe functions with
large discontinuities). Recently, a multiple scattering (MS) method [17]
based in the electronic Korringa-Kohn-Rostoker theory came to cover some
of the inefficiencies of the PW. MS method can calculate the band structure
of infinite periodic systems and also the transmission of waves through small
samples of a periodic or random composite. The method however has been
applied until now [17, 16] only in fluid composites because, due to its heavy
formalism, it is not easy to be extended to the case of full vector waves.
Thus, for the study of the full elastic wave propagation in small finite
samples the existing methods present certain inefficiencies, something that
brings the necessity for a new method.

The FDTD method which we present here is based on the discretization
of the full elastic time dependent wave equation through a finite difference
scheme. Both the time and the space derivatives are approximated by finite
differences and the field at a given time point is calculated through the field
at the previous points. Thus one can obtain the field as a function of time
at any point of a slab. The frequency dependence of the field is obtained
by fast Fourier transform of the time results.

The FDTD method, while is well known in the acoustics community [18,
19, 20] and the seismology, had not been applied until recently in the study
of the phononic crystals. Here the most important advantages of the method
are that: a) it can give the field at any point inside and outside a sample,
every time; b) it can give the field in both frequency and time domain;
c¢) the FDTD results can be directly compared with the experiments since
the method calculates the transmission through finite samples; d) it can
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be applied in systems with arbitrary material combination (e.g. solids in
fluids or fluids in solids); e) it can be applied in periodic systems as well
as in systems with arbitrary configuration of the scatterers, giving thus the
possibility to study defect states, waveguides, random systems etc.

These important advantages of the method have been already exploited
extensively in the field of EM wave band gap materials (photonic crystals)
[21-25]. For AC and EL waves the study through the FDTD is still in the
beginning [12, 26] while there is the lack of an extensive presentation of the
method.

In what follows we present first the FDTD method as it is applied in
two-dimensional (2D) systems, i.e. systems consisted of cylinders embedded
in a homogeneous host. Then we present some characteristic FDTD results
concerning propagation in a) periodic systems (in comparison with exper-
imental and PW results), b) systems with isolated defects and c) systems
with linear defects which can act as waveguides for waves with frequency
in the regime of the gap.

2. Method

The starting point for the FDTD method is the elastic wave equation in
isotropic inhomogeneous media [27],
0%u; 1075,
g _ % (1)
ot? P 8:Ej

where T;; = A(r)upd;; + 2pu(r)u;; and u;; = (Ou;/0x; + du;/0z;)/2 (in
cartesian coordinates). In the above expressions u; is the ith component
of the displacement vector u(r), 7;; is the stress tensor and wu;; the strain
tensor. Also A(r) and yu(r) are the so-called Lamé coefficients of the medium
[27] and p(r)is the mass density. The A, 4 and p are connected with the wave
velocities in a medium through the relations y = pc? and X = pc? — 2pc?,
where ¢; and ¢; are, respectively, the velocity of the longitudinal and the
transverse component of the wave. In a multicomponent system the A, u
and p are discontinuous functions of the position, r.

As is mentioned above, here we study systems consisted of cylinders
embedded in a homogeneous material. A cross section of such a system
(periodic) is shown in Fig. 1. We consider the z axis parallel to the axis
of the cylinders and propagation on the z-y plane. For such a system the
parameters A(r), u(r) and p(r) do not depend on the coordinate z and the
wave equation for the z component is decoupled from the equations for the
x and the y component. The equations for the 2 and the y component can
be written as
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Figure 1. The computational cell.
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The above equations consist the basis for the implementation of the
FDTD in 2D systems. The computational domain for the calculations pre-
sented here is a rectangular area which contains a slab of the composite
system in its central part (see Fig. 1). The sample is placed in a reservoir
of the same material as the matrix material of the composite.

For the implementation of the FDTD method we divide the computa-
tional domain in imax X Jmax subdomains (grids) with dimensions Az, Ay,
and we define

wp(i, j, k) = wp(idz — Az /2, jAy — Ay /2, kAt), t==z,y, (6)

with 1 <4 <'imax, 1 <7 < Jmax and & > 0.

In the Eqgs (2) - (5) we approximate the derivatives in both space and
time with finite differences [21]. For the space derivatives we use central
differences:
8—m|i7j,k ~ DOUg(Z,],k) = [Ug(l + 1/27]7k) - Ug(l - 1/27]7k)]/Am7
8”[

83/ |i7j7k R Dgﬂg(l,],k) = [Ug(l,] + 1/27k) - ‘Ug(i,j - 1/27k)]/Ay(7)
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For the time derivatives we use a combination of forward and backward

differences:
0%uy

Wh,j,k R DiDt_ué(iajvk)v (8)

where

D:_UI(Z,],]C) = [’W{(’i,j,k + 1) - Uf(ivjak)]/Ata
Diug(iyj k) = [ue(i,j k) —ue(i, j, b — 1)]/At, £=z,y.

For Eq. (2), using expansion at (¢, 7, k) and following the procedure
described above, we obtain

ug(i, 7,k + 1) = 2uy(i, j, k) — uyp(d, j, b — 1) +

A? : : : :
711acxl+l 27]7k _1733337’_1 27.]7k + 9
A i 125,k = T = 1/2,5, ) (9)
AL T (ivd 4 1/2,k) = Ty — 1/2,K)]
(i, 5) B, =" ’ o o

For Eq. (3), expanding at (i + 1/2,7+ 1/2, k),

uy(i+1/2,7+1/2,k+1) =
2uy(14+1/2,54+1/2,k) —uy(i+1/2,7+1/2,k—1) +
Af
i+ 1/2,7+1/2)
A
i+ 1/2,5+1/2

(T G+ 15+ 1/2.0) = T (i3 + 12,00+ (10)

)A [Tyy(l + 1/27.]+ 17k) - Tyy(i + 1/27]7k)]

The T, Ty, Ty, are functions of the field components at the time kA,
which are used for the updating of the fields for the next time. They are also
discretized through Eqs (7) and their expressions after the discretization
are given in the appendix A.

It has to be mentioned that the above way of discretization of the equa-
tions insures second order accurate central difference for the space deriva-
tives. This has as a result, however, the field components u, and u, to be
centered in different space points. To calculate, e.g., the field components
uy(1+1/2,7+ 1/2, k), which are not stored in the computational memory,
we use

Ur(z + 1/27j + 1/27k) = [ux(z +1,7+ 17k) + ux(z + 17j7k)+
ux(iv.j + 17k) + ux(l,j,k)-l-]/ll (11)
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Using the above procedure the components u, and u, at the time step
k+1 are calculated through their values at the step k. For insuring stability
of the calculations we use the stability criterion [21]

At < 0.5/ey/1/Ax? +1/Ay?, (12)

where the velocity ¢ is the highest among the sound velocities of the com-
ponents of the composite.

The Az and Ay are usually chosen as the 1/40 of the lattice constant
(for periodic systems) with very big accuracy for waves with wavelength
compared to the scatterers size.

In order to close the computational cell in the z-direction, for periodic
or symmetric along the y-direction systems, we use periodic boundary con-
ditions [u(r + R) = exp(ik - R)u(r) (R: lattice vector)] along the y axis at
i =1 and ¢ = imax (see dotted lines in Fig. 1). These conditions, here, can
be expressed as

u(imax+1ajak) = u(lajak)a (13)
u(Oajak) = u(imaxajak)- (14)

For closing the cell in the y-direction we use absorbing boundary con-
ditions. In most of the cases the first order absorbing boundary conditions
introduced by Zhou et. al. [20] have been used. These conditions are ob-
tained by the requirement the reflection at the boundaries to be zero for
two angles of incidence (6, 63), and can be written in the form

Aa_u + Ba_u + 1 8_11

9z " Py Tl 70 (15)

In Eq. (15) 7 is the identity 2 x 2 matrix, @ is the 2 X 1 matrix [u,, u,]7 (T
denotes the transpose of a matrix), and A, B are 2 x 2 matrices. For the
boundary j = jmax the matrices A and B can be expressed as

— h _ T2
A(G] ’ 02) a mé& — & Q: més — 772§1Q]’ (16)

&2 &
B(6:,65) = — , 17
(61, 62) méz — 772€1Q1 méz — 772§1Q2 (")
with e ) ( ¢
— CloG1 + CtoTq Clo — Cto)S1TH ] 18
@ [ (€10 — €10)é1m 0107712 + Ctoflz ’ ( )

Cloé:% + Cton% (Clo - Cto)E?”]Q ]
= 19
Q2 [ (1o = ¢10)€2m2 Clﬂ]% + Ctof% ’ (19)
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and & = sinf,;, n; = cosb; (i = 1,2). ¢;, and ¢4, are, respectively, the
longitudinal and the transverse wave velocity in the host material of the
composite. For the boundary j = jmin the expressions of A and B are

obtained from Eqs (16) and (17) by replacing 6; by 6, + = (i = 1,2). For
the implementation of the condition (15) we require complete absorption
for 6, =0 and 0, = 7/4

The condition (15) is discretized using central differences in space and
forward differences in time:

0 . 0 - 3}
%ND-H %NDO 78_3/

~ D§. (20)

For calculating the transmission we consider as incident wave a pulse
with a Gaussian envelop in space. The pulse is formed at ¢ = 0 in the left
side of the composite and propagates along the y-direction. A longitudinal
pulse like that has the form

u, = asin(wt — y/ei,) exp[—B(wt — y/ )], (21)

while for a transverse one u, is replaced by u, and ¢, by ¢;,. The incident
pulse is narrow enough in space as to permit the excitation of a wide range
of frequencies.

The components of the displacement vector as a function of time are
collected at various detection points depending on the structure of interest.
They are converted into the frequency domain using fast Fourier transform.
The transmission coefficient (77) is calculated either by normalizing the (fre-
quency dependent) transmitted field amplitude [(ui—l—ui)l/ 2] by the incident
field amplitude or through the energy flux vector J (J; = T;;du;/dt). In the
second case the transmitted flux vector is also normalized by the incident
wave flux.

Concerning the case of pure acoustic waves (waves in fluid compos-
ites) the application of the FDTD starts again from the Eqs (2) - (5), but
omitting the terms which include the Lamé coefficient p. The equations
are discretized through the same procedure as for the full elastic case. The
boundary conditions coefficients are calculated again through the equations
(16) - (19) where the velocity ¢;, must be replaced by ¢;, (this replacement
is essential in all the cases where the host material is fluid).

3. Results

In the present section we present results of the FDTD method for periodic
systems and for systems with defects.
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Figure 2. Left: Band structure along the MI'X direction for a periodic system of Cu
cylinders in PMMA| in a square arrangement, with cylinder radius over lattice constant
r./a = 0.35. The band structure is calculated through the PW method. ¢, is the lon-
gitudinal sound velocity in PMMA. Right: Transmission coefficient vs frequency for the
system of the left panel. The incident wave is longitudinal propagating in the < 10 >
direction.

3.1. PERIODIC SYSTEMS

Using the FDTD method one can examine the existence of band gaps in
a periodic composite system. This can be done by calculating the trans-
mission coefficient through finite slabs of the system. Calculations like that
provide a good test for the method as one can compare its results with
corresponding results of other methods, where available. Here we calculate
the transmission through a periodic composite consisting of Cu cylinders in
PMMA host. We consider a 3 X 3 cylinders slab of the composite where the
cylinders are placed within a square arrangement and the ratio of cylinder
radius, 7., over lattice constant, a, is 0.35. The result, which is shown in
the right panel of Fig. 2, is compared with a corresponding result obtained
through the PW method (see Fig. 2 - left panel). As one can see in Fig.
2, the agreement between the two methods is very good. Comparisons like
that demonstrate the ability of the FDTD method to study the propagation
in elastic multicomponent systems. It has to be mentioned, however, that
the FDTD method is also able to calculate band structure (see Ref. [22] for
such a calculation for EM waves), although through a more complicated
procedure than that of the PW.

In Fig. 3 we compare FDTD results with results of a recent experi-
mental study [11]. Fig. 3 shows the transmission coefficient for a periodic
composite consisting of duraluminum cylinders in epoxy, in a square array,
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Figure 3.  Left: Experimental transmission coefficient vs frequency for a system of

duraluminum cylinders in epoxy (see Ref. [11]), in a square lattice, with cylinders radius
over lattice constant r./a = 0.4. Right: Transmission coefficient, calculated trough the
FDTD method, for the system of the left panel.

with 7./a = 0.4. The left panel shows the experimental result and the right
panel the corresponding FDTD result. The agreement between theory and
experiment in the position and the width of the gaps is very good. The
difference in the relative height of the peaks is due to the different size of
the systems and due to the relatively high absorptivity of the epoxy, which
has not been taken into account in the calculations.

3.2. DEFECTS

As we mentioned above, the FDTD method is ideal for the study of dis-
order induced phenomena. Here we exhibit this ability of the method by
presenting results concerning systems with isolated defects.

We create an isolated defect by removing one cylinder from a periodic
slab of the Cu in PMMA composite which was discussed in connection with
Fig. 2. By removing one cylinder from a 3 x 3 cylinders slab of the composite
and by calculating the transmission coefficient we obtain what is shown in
the left panel of Fig. 4 - solid line (the dashed line shows the transmission
for the periodic system). The transmission peak close to the midgap of
the periodic system shows the formation of a defect state in this regime.
Sending a monochromatic plane wave with the frequency of the defect state
and examining the field over the sample we obtain the picture shown in the
right panel of Fig. 4. The defect creates an s-like state, localized around
the missing cylinder.
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Figure 4. Left: Transmission coefficient vs frequency for a periodic system of Cu
cylinders in PMMA, in a square arrangement, with cylinder radius over lattice con-
stant r./a = 0.35, and with one missing cylinder (solid line) or without missing cylinder
(dashed line). Right: The field over the sample for the system with the missing cylinder
which discussed in the left panel. The incident wave is a a monochromatic plane wave
with the frequency of the defect state.

3.3. WAVE GUIDES IN ELASTIC CRYSTALS

By removing a line of cylinders from a periodic composite instead of remov-
ing one single cylinder, one can create a linear defect. For electromagnetic
wave propagation it has been shown [23, 24, 25] that such a defect can act
as a waveguide for waves in the frequency regime of the gap as it consists
the only channel of propagation for these waves. Recently, this guiding of
waves through linear defects in periodic crystals was also shown for the
case of the elastic waves [12, 26]. Using the FDTD method it was found
that guides created as linear defects in elastic band gap materials can lead
to total transmission of waves with frequency in the regime of the gap.
The high transmitivity through such type of guides is demonstrated in the
left panel of Fig. 5 (solid line). The results presented in Fig. 5 concern a
7 x 8 cylinders slab of a Cu in PMMA composite similar to the one of Fig.
2, from which we remove one row of cylinders. As one can see in Fig. 5,
the transmission coefficient is close to one for almost all the gap regime of
the periodic system. Sending monochromatic waves with frequencies in this
regime (T = 1) one can see a great guiding of the waves through the de-
fect state. This guiding is demonstrated in the right panel of Fig. 5, where
it is shown the field created by a longitudinal incident plane wave with



THE FDTD METHOD FOR 2D ELASTIC BAND GAP MATERIALS 11

frequency the midgap frequency.
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Figure 5. Left: Transmission coefficient vs frequency for a 7x8 cylinders slab of the
Cu in PMMA composite discussed in Fig. 2, with one row of missing cylinders (solid
line) or without missing cylinder (dashed line). Right: The field over the sample for the
system of the left panel. The incident wave is a monochromatic plane wave at the midgap
frequency.

Examining Fig. 5, however, one can see a pronounced dip in the trans-
mission coefficient through the guide. Detailed examination of the origin of
this dip (through band structure calculations) has shown that responsible
for the dip is a gap in the propagation of the guided waves. The existence
of gaps in the guided wave propagation (mini-gaps) is not something unex-
pected if one takes into account the periodic form of the guide “boundaries”.
These periodic “boundaries” impose a periodic potential in the guided wave
propagation which, as the guided wave propagation is almost 1D, can eas-
ily lead to formation of gaps. The same “mini-gaps” possibly exist also for
EM wave propagation through guides formed in photonic crystals, although
such an existence has not been reported yet. The dips in the transmitiv-
ity of the guides formed as defects in elastic crystals is one of the main
achievement of the FDTD in the field of elastic wave propagation in binary
composites. Examination of the position of these dips showed that it de-
pends on the material parameters of the components of the composites and
mainly on the density and the velocities contrasts between scatterers and
host.
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4. Conclusions

We presented the FDTD method for 2D acoustic and elastic binary com-
posites. The ability of the method to describe the wave propagation in these
composites was demonstrated by presenting representative FDTD results
for periodic systems (in comparison with PW and experimental results)
and for single and line defects.

A. Calculation of the coefficients 7., 1), Tvy.

To(i+1/2, 5, k) =
(A 2p)(i +1/2, ) [ux(i + 1,7, k) — up(4, 5, k)] /Ay +
A+ 1/2, ) uy(i+1/2,5 + 1/2,k) —uy (1 + 1/2,5 — 1/2,k)]/A,  (22)

Toe(i—1/2,4,k) =
(A + 2”)(2 B 1/27.7')['”33(1'7]'7]6) - U’J-"(Z - 17.77k)]/AJ3 +
’\(z - 1/27.7')[uy(i - 1/27j + 1/27k) - uy(i - 1/27j - 1/27k)]/Ay (23)

Toy(i, 5 +1/2,k) =
:u(iv.j + 1/2)[u$(i7j + 1vk) - uw(ivjvk)]/Ay +
i+ 120+ 12,5+ 1/2,8) — uy (i = 1/2, 5+ 1/2,0))/A, (24)

Tpy(i,7—1/2,k) =
H(iaj - 1/2)[u$(i7jvk) - Ur(zaj - 17k)]/Az +
/L(ivj - 1/2)[Uy(i + 1/27j - 1/27k) - uy(i - 1/27j - 1/27k)]/Ax (25)

Toy(i+ 1,5+ 1/2,k) =
p(i+ 1,5+ 1/2)ug(i + 1,5+ 1,k) — ue(i + 1,5, k)] /Ay +
p(i+ 1,54+ 1/2)[uy(i +3/2,5+1/2,k) — uy (i + 1/2, 5 + 1/2, k)] /Ay (26)

Toy(irj +1/2, k) =
H(iaj + 1/2)[ux(i7j + 17k) - Ux(iajak)]/Ay +
WG+ 1/2) (i 172,54 1/2,) = wy(i = 1/2,+ 12, 0))/A. (21)

Tyy(i4+1/2,5+1,k) =
(A+2u)(+1/2,5 + Dfuy(i +1/2,5 + 3/2,k) -
uy(i + 1/27j + 1/27k)]/Ay +
AMi+1/2,5+ Dfug(i+ 1,54+ 1,k) — ue(i, 5 + 1, k)] /Ay (28)
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Tyy(i+1/2,5,k) =
(A+20) (0 +1/2,5)[uy (1 + 1/2,5+ 1/2, k) =
uy(i + 1/27j - 1/27k)]/Ay +

A+ 1/2, ) us(i 4+ 1,4, k) — ue(i, 5, k)] /A (29)
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