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Abstract: The combination of gain and loss in optical systems that respect parity–time (PT)-symmetry
has pointed recently to a variety of novel optical phenomena and possibilities. Many of them can be
realized by combining the PT-symmetry concepts with metamaterials. Here we investigate the case of
chiral metamaterials, showing that combination of chiral metamaterials with PT-symmetric gain–loss
enables a very rich variety of phenomena and functionalities. Examining a simple one-dimensional
chiral PT-symmetric system, we show that, with normally incident waves, the PT-symmetric and
the chirality-related characteristics can be tuned independently and superimposed almost at will.
On the other hand, under oblique incidence, chirality affects all the PT-related characteristics, leading
also to novel and uncommon wave propagation features, such as asymmetric transmission and
asymmetric optical activity and ellipticity. All these features are highly controllable both by chirality
and by the angle of incidence, making PT-symmetric chiral metamaterials valuable in a large range of
polarization-control-targeting applications.

Keywords: non-Hermitian photonics; PT-symmetry; exceptional points; chiral metamaterials;
PT phase transition

1. Introduction

A quantum mechanical Hamiltonian is called parity–time (PT)-symmetric if, and only if,
it commutes with the combined action of parity, P̂, and time-reversal, T̂, operators (i.e.,

[
P̂T̂, Ĥ

]
= 0),

with the brackets denoting the commutator. Since the action of parity on the momentum and
position operators, p̂ and r̂, respectively, results to p̂→ −p̂ , r̂→ −r̂ , and the time-reversal to p̂→ −p̂ ,
r̂→ r̂ (and also t→ −t and the imaginary unit i→ −i ) [1–4], the requirement for PT-symmetry
in a one-dimensional quantum Hamiltonian results to the symmetry condition for the potential
V∗(−r) = V(r), where the star (*) denotes the complex conjugate. In other words, the real part of
the complex potential must be a symmetric function of position, while the imaginary part should be
antisymmetric. In fact, a characteristic feature in PT-symmetric Hamiltonians is that the eigenvalues are
real below a threshold value of the potential (region where also eigenstates are PT-symmetric—usually
called PT-phase), while above that threshold (in the so-called PT-broken phase) the PT- symmetry
of the eigenstates is not preserved anymore and the eigenvalues become complex. At the transition
point between PT and PT-broken phase, the so-called exceptional point (EP), two or more eigenvalues
and the corresponding eigenvectors coincide, making EPs associated with exotic wave propagation
behavior [5].
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Although the PT-symmetry concept started from quantum mechanics, it was very quickly
transferred to optics, where in recent years it is being studied very actively [6–16]. In optical systems
the PT-symmetry requirement results in symmetry conditions for the complex material parameters [6]
(i.e., permittivity and permeability), realizable by proper combination of loss and gain in a system.
Since both gain and loss can be introduced and adjusted externally, it is much more straightforward
to realize PT-symmetry in optical systems than in quantum ones, and this has been the main reason
for the increasingly growing studies on optical PT-symmetric systems [6–27]. These studies revealed
a series of novel and uncommon optical phenomena, such as unidirectional reflectionless perfect
transmission [17], unidirectional invisibility [11,15], PT-breaking transitions [19], simultaneous coherent
perfect absorption (CPA) and lasing [18–20], and others.

Many of the above phenomena have been studied and demonstrated in scattering rather than
paraxial propagation configuration. In such configurations the identification of the different PT-related
phases is usually done through the eigenvalues of the scattering matrix [15,17]. In the PT-symmetric
phase the scattering matrix eigenvalues are unimodular, while in the PT-broken phase they are
not unimodular but they form pairs of inverse moduli. At the EP two or more eigenvalues and
eigenvectors coincide.

A major part of the existing studies regarding PT-symmetry in scattering configurations has
been devoted also to the combination of PT-symmetry with metamaterials [21–25], and mainly
with zero permittivity or permeability metamaterials [22,23,25], due to their unusual properties,
such as constant phase throughout the whole metamaterial volume. Among the interesting
relevant effects reported are nonreciprocal modes [25] at the interface between two mu-near-zero
PT-symmetric metamaterials, exponentially-bound interface modes characterized by zero attenuation
in epsilon-near-zero metamaterials [23], etc.

A category of metamaterials that was, until recently, highly unexplored under the concept of
PT-symmetry is chiral metamaterials [26–28], which is the subject of the present work. A chiral medium
is such that it cannot be superimposed with its mirror image [29,30]. This asymmetry results in a strong
magneto–electric coupling (i.e., excitation of a magnetic polarization by an applied electric field and of
an electric polarization by a magnetic field). As a result, the medium responds differently to left- and
right-handed circularly polarized waves (LCP/RCP), which are the eigenwaves in chiral media. Among
the interesting and useful effects resulting from this different response are the circular dichroism (i.e.,
different absorption of LCP and RCP waves), and the optical activity (i.e., the polarization rotation of
an initially linearly polarized electromagnetic wave passing through the medium). Both of these effects
are due to the different refractive index (real and imaginary part that LCP and RCP waves experience
in chiral media). In chiral metamaterials the magneto–electric coupling is orders of magnitude stronger
than in natural chiral media [30–36], because of their unit cell being much larger than atomic size;
as a result, circular dichroism and optical activity are also much stronger in metamaterials, a feature
which can be exploited in a variety of polarization control applications, such as polarization converters,
polarization filters [31], etc.

Based on the above, by combining PT-symmetry (gain–loss and all the effects coming from their
interplay; e.g., coherent perfect absorption-lasing, PT phase transition, etc.) with chiral metamaterials
(polarization related effects), two different worlds of propagation characteristics can be merged,
thus promising unique propagation and polarization control possibilities. This paper aims to reveal
some of these possibilities, some of which were also pointed out by our recent studies [26,27].

More specifically, in this work we start by showing that in chiral media, despite the lack of mirror
(and thus parity) symmetry, it is still possible to achieve full PT-symmetry and thus real eigenvalues;
moreover, we derive the necessary material parameter conditions for full PT-symmetry. Next we exploit
these conditions in scattering configurations. In particular, we consider a simple model-system composed
of a chiral PT-symmetric bilayer and we explore its scattering response under illumination with circularly
polarized (CP) waves. First we investigate the case of normally incident waves. We find that the
eigenvalues of the scattering matrix in this case are independent of chirality (i.e., the PT-symmetric
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phase is the same for chiral and non-chiral systems of the same permittivity and permeability values
(obeying PT-symmetry)). This is an important finding, as it allows us to tune the PT-related phenomena
independently from the chirality-related phenomena. Next, we expand the analysis by allowing
obliquely incident CP waves and we find that, now, the eigenvalues of the scattering matrix do depend
on the chirality. Additionally, we find that any deviation from normal incidence opens up a rich
phase diagram, including three distinct phases: full PT-symmetric phase, mixed PT-symmetric phase,
and broken PT-symmetric phase. As we demonstrate, both the boundaries of these phases and the
polarization features of the waves transmitted through the system can be highly controlled by tuning
the chirality parameter and/or the angle of incidence. Thus, as we demonstrate here, in PT-symmetric
chiral metamaterials a wide range of advanced polarization control capabilities is possible.

2. Physical Model and Main Equations

2.1. PT-Symmetry Conditions in Chiral Systems

In order to examine if there is a possibility to achieve PT-symmetry in chiral media and to derive
the associated conditions, we transform the Maxwell’s curl equations, ∇× E = iωB and ∇×H = −iωD
with the chiral constitutive relations [30,37] D = εε0E + i(κ/c)H and B = µµ0H − i(κ/c)E into an
eigenvalue problem analogous to that of the Schrödinger’s equation. In the above relations E is the
electric field, H the magnetic field, D the displacement field, and B the magnetic induction; also ε,
µ, κ refer to the relative permittivity, permeability, and the chirality parameter (which quantifies the
magnetoelectric coupling [29–31]), respectively, ε0, µ0 are the vacuum permittivity and permeability,
respectively, and c is the vacuum speed of light. Solving the resulting equations in terms of E and H,
the magneto–electric coupling in the constitutive relations does not allow for the problem to be cast as
a simple eigenvalue problem, because the eigenvalue ω appears in the generalized Hamiltonian as
well. A way to overcome the problem is to solve the equations for the fields B, D, instead. In that case
we obtain an eigenvalue problem of the form

Â
[

B
D

]
= ω

[
B
D

]
, (1)

where Â is a tensor-operator analogous to the Hamiltonian in the Schrödinger problem, expressed as

Â =

[
−i[∇A1(r) + A1(r)∇]× −i[∇A2(r) + A2(r)∇]×
i[∇A3(r) + A3(r)∇]× i[∇A4(r) + A4(r)∇]×

]
. (2)

In Equation (2), A1(r) = −iκc/
(
εµ− κ2

)
, A2(r) = µµ0c2/

(
εµ− κ2

)
, A3(r) = εε0c2/

(
εµ− κ2

)
,

and A4(r) = iκc/
(
εµ− κ2

)
(for simplicity we have omitted the space dependence in ε, µ, and κ).

By requiring Â to commute with the PT operator (see, e.g., [21,26]), that is,
[
P̂T̂, Â

]
= 0, and taking into

account that P̂T̂(i∇×) = i∇×, we derive the material parameter conditions as to have a PT-symmetric
chiral system. These conditions read as follows:

ε(r) = ε∗(−r),µ(r) = µ∗(−r),κ(r) = −κ∗(−r). (3)

Note that the first two of the conditions (3) are the ones that have been derived also in the case of
non-chiral metamaterials [21].

As has been already widely discussed in [5–19], the full PT-symmetry (i.e., the existence of real
eigenvalues), requires that, besides the PT-symmetry of the Hamiltonian, Â (ensured by the condition
[P̂T̂, Â] = 0), also the eigenstates of Â are PT-symmetric. In chiral media, where the eigenstates are left-
and right-handed circularly polarized waves (denoted below by the subscripts − and +, respectively),
the action of parity operator, P̂, and time-reversal operator, T̂, reveals that the eigenstates cannot be
fully PT-symmetric. In particular, for eigenstates of the form E± = E0(x̂± iŷ)ei(k±z−ωt), where E0 is
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the amplitude being a real number and k± = ω
(√
εµ± κ

)
/c are the wavenumbers for RCP(+)/LCP(−)

waves, the action of time-reversal operator, T̂ ( i→ −i, t→ −t ), in E± gives

T̂E± = E0(x̂∓ iŷ)e−i(k∗
±

z+ωt). (4)

The action of parity operator, P̂, in (4) flips the space (x→ −x , y→ −y , z→ −z ), that is,

P̂T̂E± = −E0(x̂∓ iŷ)ei(k∗
±

z−ωt). (5)

Employing the conditions (3) to Equation (5), to associate the wavenumbers k± with their
PT-symmetric counterparts, we conclude that

P̂T̂E± = −E∓. (6)

Thus, the action of P̂T̂ in our case does not leave the eigenwaves unchanged; it rather transforms an
initial RCP wave to LCP and vice versa—except for a phase factor. (Note that, using the conditions (3),
the above PT transformations lead to the same conclusion also for the fields H, B, and D). Nevertheless,
despite the lack of PT-symmetry in the eigenwaves, there is still the possibility for real eigenvalues
(PT-symmetric phase). This possibility is ensured by the degeneracy of RCP/LCP eigenwaves with
respect to the frequency, as can be easily seen by applying the condition (3) into Equation (1) [26].
Hence, our analysis demonstrates the possibility to obtain real eigenvalues in PT-symmetric chiral
systems and provides the associated conditions. However, as numerical results in scattering systems
have shown, the conditions (3) for the chirality parameter are not the only ones that lead to fully
PT-symmetric phase, at least in scattering configurations [26]. In such configurations there are cases
beyond condition (3) for κ which yield similar features and similarly useful properties [27].

2.2. Chiral Systems in Scattering Configurations under Normal Incidence: The Scattering Matrix

Having derived the necessary conditions for PT-symmetry in chiral systems (Equation (3)),
in the rest of the paper we turn our attention to scattering configurations, applying those conditions
and investigating the scattering features and response of the resulting systems. Our model-system is a
homogeneous one-dimensional (1D) chiral bilayer (of thickness L = 2d along z and infinite extent along the
x, y directions), as shown in Figure 1. The complex material parameters ε, µ, and κ of the two media involved
in our system are the relative permittivity, relative permeability, and chirality parameter, respectively.
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Figure 1. Our model one-dimensional chiral bilayer. It is infinite along the x- and y-directions and
of thickness L = 2d along the z-direction. For parity-time (PT)-symmetry the material parameters of
the two media (A and B) should obey εA = ε∗B, µA = µ∗B, κA = −κ∗B, with ε, µ, κ being the relative
permittivity, permeability, and chirality parameter, respectively. The amplitudes of the incident (a±, d±)
and scattered (b±, c±) waves are also shown, where the subscripts +/− account for RCP/LCP waves.
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In our system we consider normal incidence with four input and four output ports, each one
allowing either LCP or RCP waves, as illustrated in Figure 1. We start with the most general form for
the electric field outside the PT-symmetric structure, as

E(z, t) =


(
a+eik0z + b+e−ik0z

)^
e+ +

(
a−eik0z + b−e−ik0z

)^
e−, z < −d(

c+eik0z + d+e−ik0z
)^
e+ +

(
c−eik0z + d−e−ik0z

)^
e−, z > d

, (7)

where a±, d± and b±, c± are amplitudes of the ingoing and outgoing, respectively, LCP(−) and RCP(+)
waves (as observed from the source point), ê+ = (x̂ + iŷ)/

√
2 and ê− = (x̂− iŷ)/

√
2, and k0 = ω/c.

A similar expression can be used for the electric field inside the chiral bilayer, with k0 replaced by the
relevant chiral wavenumbers k± = ω

(√
εµ± κ

)
/c [30].

Due to the two possible circular polarizations at each of the two sides of the structure, the system
should be described by a 4 × 4 scattering matrix, S0, defined by (see Figure 1)


b−
c+
b+
c−

 = S0


a+
d−
a−
d+

 ≡


r(L)
−+ t(R)

−−
r(L)
−−

t(R)
−+

t(L)++ r(R)+− t(L)+− r(R)++

r(L)++ t(R)+− r(L)+− t(R)++

t(L)
−+ r(R)

−−
t(L)
−−

r(R)
−+




a+
d−
a−
d+

 =


r(L) t−− 0 0
t++ r(R) 0 0

0 0 r(L) t++

0 0 t−− r(R)




a+
d−
a−
d+

, (8)

where the last equation shows the S0 matrix as is simplified in our case. In Equation (8), t++ ≡ t(L)++ = t(R)++

and t−− ≡ t(L)
−−

= t(R)
−−

are the transmission coefficients for RCP(+)/LCP(−) light, while r(L) ≡ r(L)+− = r(L)
−+

and r(R) ≡ r(R)+− = r(R)
−+ are the reflection coefficients for LCP(−)/RCP(+) light (the superscript (L) or

(R) indicates incidence from left or right, respectively). The remaining eight scattering coefficients
(t(L)+−, t(L)

−+, t(R)+−, t(R)
−+ and r(L)++, r(L)

−−
, r(R)++, r(R)

−−
) are zero in our case. (Note that the first subscript in t and r

indicates the scattered wave polarization and the second the incident wave indicates polarization.)
To investigate when the system lies in the PT-symmetric or PT-broken phases, and to identify

the position of exceptional points, the first step is to evaluate the eigenvalues and eigenvectors of
the scattering matrix S0 [17,38,39]. As was mentioned also in the Introduction, in the PT-symmetric
phase the eigenvalues of the scattering matrix are unimodular, while in the PT-broken phase they are
not. Therefore by calculating the scattering matrix eigenvalues one can identify the different possible
PT-related phases and the EP. The eigenproblem solution for our scattering matrix S0 yields two
degenerate pairs of eigenvalues, σ, which are given by

σ1,2 = σ3,4 =
1
2

r(L) + r(R) ±

√(
r(L) − r(R)

)2
+ 4t++t−−

. (9)

The corresponding eigenvectors are given by

For σ1,2 : v1,2 =


1

2t−−

(
r(L) − r(R) ±

√(
r(L) − r(R)

)2
+ 4t++t−−

)
1
0
0


, (10)

for σ3,4 : v3,4 =


0
0

1
2t++

(
r(L) − r(R) ±

√(
r(L) − r(R)

)2
+ 4t++t−−

)
1


. (11)



Photonics 2020, 7, 43 6 of 16

From Equations (8)–(11) and Figure 1 one can observe that the eigenvectors correspond to pure
circularly polarized waves (either incoming or outgoing) of opposite handedness at the two opposite
sides of the slab.

Note that, depending on the arrangement of the input and output ports in the column matrices
of Equation (8), we can build our scattering matrix formalism in several ways, which characterize
different physical processes. Here, we have chosen the case related with the position of exceptional
points (EPs), in which the system passes from PT-symmetric phase to PT-broken phase [17–19,39]
(similarly to non-chiral PT symmetric systems) [19]. In this case, the scattering matrix S0 satisfies the
relation PTS0(ω∗)PT = S0

−1(ω) [17,19], which is a fundamental condition obeyed by PT-symmetry.
Although for PT-symmetry we should impose conditions (3) to the material parameters of our

system, to obtain more general expressions we start our analysis with arbitrary parameters εA, µA, κA,
εB, µB, κB. For arbitrary material parameters, the reflection and transmission coefficients for circularly
polarized waves are expressed as

t++ = −
8eid(k+A+k+B −2k0)

A + B
, (12)

t−− = −
8eid(k−A+k−B−2k0)

A + B
, (13)

r(L) = −
e−2ik0d

(
C(L) + D(L)

)
A + B

, (14)

r(R) = −
e−2ik0d

(
C(R) + D(R)

)
A + B

, (15)

where

A = ZA

[
+

(
1

ZA
+ 1

)
+

(
1

ZA
− 1

)
eid(k+A+k−A)

][
−

( 1
ZB

+ 1
)
+

( 1
ZB
− 1

)
eid(k+B +k−B )

]
, (16)

B = ZB

[
−

(
1

ZA
+ 1

)
+

(
1

ZA
− 1

)
eid(k+A+k−A)

][
+

( 1
ZB

+ 1
)
+

( 1
ZB
− 1

)
eid(k+B +k−B )

]
, (17)

C(L) = ZA

[
+

(
1

ZA
+ 1

)
eid(k+A+k−A) +

(
1

ZA
− 1

)][
+

( 1
ZB
− 1

)
eid(k+B +k−B ) −

( 1
ZB

+ 1
)]

, (18)

D(L) = ZB

[
+

(
1

ZA
+ 1

)
eid(k+A+k−A) −

(
1

ZA
− 1

)][
+

( 1
ZB
− 1

)
eid(k+B +k−B ) +

( 1
ZB

+ 1
)]

, (19)

C(R) = ZA

[
+

( 1
ZB

+ 1
)
eid(k+B +k−B ) −

( 1
ZB
− 1

)][
+

(
1

ZA
− 1

)
eid(k+A+k−A) +

(
1

ZA
+ 1

)]
, (20)

D(R) = ZB

[
+

( 1
ZB

+ 1
)
eid(k+B +k−B ) +

( 1
ZB
− 1

)][
+

(
1

ZA
− 1

)
eid(k+A+k−A) −

(
1

ZA
+ 1

)]
, (21)

and k±i = k0
(√
εiµi ± κi

)
, i = A or B are the wavevectors, while Zi =

√
µ0µi/ε0εi, i = A or B are the

wave impedances in the two chiral layers.
Investigating further the above equations, one can observe that the reflection coefficients are totally

independent of the chirality parameters of the two media, since all the terms A, B, C(L), D(L), C(R), D(R)

are chirality independent (note that they depend only on the impedances ZA, ZB and terms of the
form eid(k+A+k−A) = e2idk0

√
εAµA and eid(k+B +k−B ) = e2idk0

√
εBµB , all independent of chirality). Moreover,

the product t++t−− is also independent of chirality. (Note that t++ = tnon−chiraleidk0(κA+κB) and
t−− = tnon−chirale−idk0(κA+κB), where tnon−chiral is the transmission for the system of the same permittivities
and permeabilities but with zero chirality for both media.) Therefore the eigenvalues of the scattering
matrix are independent of chirality, demonstrating that the different PT-symmetry-related phases of
our system and the exceptional point are totally chirality independent. This is an important feature,
which will be demonstrated and discussed further in the next sections.
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2.3. Generalized Unitarity Relations for Chiral PT-Symmetric Systems

By exploiting the PT-symmetry properties of our system following the procedures of [17], we can
formulate the generalized unitarity relation for the four-port case. This can be done using the transfer
matrix formalism, which is commonly used in electromagnetic theory [17,18]. We start from the general
4 × 4 scattering matrix configuration (Equation (8)), expressing the elements of the transfer matrix M
in terms of the elements of the scattering matrix S0 as

M =


1/S21 −S22/S21 0 0

S11/S21 S12 − (S11S22/S21) 0 0
0 0 1/S43 −S44/S43

0 0 S33/S43 S34 − (S33S44/S43)

. (22)

Therefore, the transfer matrix M can be written as
a+
b−
a−
b+

 = M


c+
d−
c−
d+

 =


1/t++ −r(R)/t++ 0 0
r(L)/t++ t−− − (r(L)r(R)/t++) 0 0

0 0 1/t−− −r(R)/t−−
0 0 r(L)/t−− t++ − (r(L)r(R)/t−−)




c+
d−
c−
d+


(23)

It is straightforward to show that the transfer matrix M satisfies the quite general condition
det[M] = 1 [17,18] and, additionally, the symmetry relation M =

(
M−1

)∗
, which is a direct consequence

of PT-symmetry. By taking into account the above two conditions, resulting to MM∗ = I (with I the
identity 4 × 4 matrix), we obtain the generalized unitarity relation for a general chiral PT-symmetric
system, which is expressed as ∣∣∣∣ √T++T−− − 1

∣∣∣∣ = √
R(L)R(R), (24)

where T++ ≡ |t++|
2, T−− ≡ |t−−|2 and R(L)

≡

∣∣∣r(L)∣∣∣2, R(R)
≡

∣∣∣r(R)∣∣∣2 are the transmission and reflection
power coefficients, respectively. It should be noted that the relation (24) is valid for all 1D chiral
PT-symmetric structures and it holds in both the PT-symmetric and PT-broken phases. It does not
correspond though to flux conservation, which can occur only under strict conditions regarding the
incident wave configurations.

Since, as was pointed out earlier, both the reflection coefficients and the product t++t−− are
independent of chirality, all the terms of Equation (24) are chirality-independent, although the
coefficients T++ and T−− alone are chirality-dependent. This shows that if we add chirality in a
non-chiral PT-symmetric bilayer that is at an anisotropic transmission resonance (ATR) point (i.e., T = 1
and one of the R(L), R(R) is zero), which corresponds to unidirectional flux conservation, we will always
be at the condition T++=1/T−−. In that case, though, a flux-conserving process for waves incident from
one side is realized only if T++=T−− = 1, a condition incompatible with the PT-symmetry requirement
for κ (for non-zero Im(κ)) and normal incidence [see Equations (12)−(15) and the paragraph after them].

3. Results and Discussion

3.1. PT-Symmetric Chiral Bilayer under Normal Incidence: Different PT Phases and Scattering Characteristics

In non-Hermitian systems the amplitude of the scattering matrix eigenvalues is either below (decay)
or above (growth) unity. In the case of PT-symmetry, where gain and loss are in balance, the eigenvalues
of the scattering matrix can be unimodular and are in fact unimodular below the exceptional point; thus
their calculation offers the possibility to identify the exceptional point and the different PT-related phases.
To investigate this possibility and its associated effects in the case of chiral systems, we investigated
the system of Figure 1 with some representative material parameters satisfying the PT-symmetry
conditions (Equation (3)): εA = 3.0 − 0.4i, εB = 3.0 + 0.4i,µA = 1.1 − 0.1i,µB = 1.1 + 0.1i and
κA = −0.04− 0.04i,κB = 0.04− 0.04i. For those parameters the scattering matrix (S0) eigenvalues (see
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Equation (9)) as a function of frequency are plotted in Figure 2e, demonstrating the existence of the two
different phases; the PT-symmetric one characterized by unimodular eigenvalues and the PT-broken
one characterized by eigenvalues of inverse moduli. At the exceptional point (at ωL/c = 22.25) all
eigenvalues coincide.
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Figure 2. (a–d) Left column: PT-symmetric bilayer (see Figure 1) of length L without chirality.
(e–h) Middle column: Chiral PT-symmetric bilayer. (i–l) Right column: Chiral bilayer beyond
PT-symmetry (for the material parameters of the systems see text). First row: Eigenvalues of the
scattering matrix S0 (see Equation (9)). Second row: Eigenvectors of the scattering matrix S0 (see
Equations (10) and (11)). Third row: Reflection, R, and transmission, T, (power) coefficients for LCP(−)
and RCP(+) waves impinging on both left (see superscript (L)) and right (see superscript (R)) sides of
the systems. The left hand side (l.h.s.) of the generalized unitarity relation R(L)R(R) + 2

√
T++T−− −

T++T−− = 1 (see Equation (24)) is also plotted (dashed line). Bottom row: Ellipticity, η, and optical
activity, θ, of a wave transmitted through the three systems studied. All features are plotted as a
function of the dimensionless frequency ωL/c, with c the vacuum speed of light and L = 2d the total
system length/thickness.

As has been discussed already in Section 2, the eigenvalues in our case are independent of chirality,
since both the reflection coefficients and the transmission product t++t−− are chirality independent.
This is also verified numerically in Figure 2, where, besides the eigenvalues of the chiral PT system,
we have also plotted the eigenvalues of a system with the above PT-symmetric permittivity and
permeability values, but with κ = 0 in both media (see Figure 2a) and for a system without any
symmetry in κ; i.e., κA = −0.06 − 0.02i,κB = −0.04 − 0.01i (see Figure 2i). For all three systems the
scattering matrix eigenvalues shown in Figure 2 are identical.
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For the above-mentioned three systems we have calculated also the amplitudes of the scattering
matrix eigenvectors (second row of Figure 2) and the transmission (T) and reflection (R) power
coefficients for circularly polarized incident waves (third row of Figure 2). From the eigenvector plots
(depicting the non-zero, non-unity components of Equations (10)−(11)) it can be observed that, while in
the case of non-chiral PT-symmetric systems (Figure 2b) the ratio of the two non-vanishing components
for each eigenvector is unimodular below the exceptional point, in chiral PT-symmetric structures
(Figure 2f) it is not. Considering a system excitation configuration of the form of an eigenvector,
the corresponding scattered waves, which are pure circularly polarized waves of opposite handedness
at the left and right sides of the slab, above the exceptional point will be either exponentially growing
or attenuating (depending on the incident wave configuration). At particular frequencies above EP,
these two modes (growing-attenuating) are expected to give simultaneous CPA and lasing of circularly
polarized waves, analogous with the CPA-lasing modes of the non-chiral PT-symmetric systems [18,19].
The particular circular polarization favored in our foreseen CPA-laser modes depends mainly on the
sign of the Im(κ) of the two chiral slabs. We have to note here that the above-described eigenvector
behavior seem to survive qualitatively, even if the chiral system is beyond PT-symmetry (see Figure 2j).

Regarding the transmission and reflection coefficients for our isotropic chiral medium, as expected
T++ and T−− do not depend on the side of incidence (since the system is reciprocal), while a similar
condition does not hold for the reflection coefficients, as can be seen in Figure 2g. Comparing Figure 2g
with Figure 2c,k (i.e., the case of non-chiral PT-symmetric structure and the case beyond PT-symmetry
in κ, respectively), we can see that the chirality parameter has strong influence on the transmission
coefficient and none on the reflection. Note that the chirality independence of the reflection coefficient
was also observed in the corresponding analytical expressions (even for non-PT systems; see Section 2),
while from the same expressions (see Equations (12)–(21) and the paragraph after them) one can
conclude that the transmission (power) coefficient depends on the chirality parameter exponentially
(in particular T depends on the Im(κA+κB); see Figure 1). Such a dependence, although having strong
influence on the transmission magnitude, does not affect the frequency position of the zeros and the
resonances of the transmission, something observable also from Figure 2.

In the rest of the current subsection we investigate the impact of our system on the polarization of
an incoming wave. For that we examine first the optical activity, θ, of our structure, which for absence
of cross-polarized transmission terms (e.g., t+−) is given by θ = 0.5[Arg(t++) −Arg(t−−)]. Taking into
account Equations (12) and (13), we can find that for a general chiral bilayer as the one of Figure 1 (i.e.,
prior application of PT-symmetry conditions)

θ = k0d[Re(κA) + Re(κB)]. (25)

Due to the symmetries imposed by applying PT (Equation (3)), the real part of the chiralityκ changes
sign across the bilayer. Hence, the polarization rotation occurring in the gain slab is subsequently
canceled out when the wave passes through the loss slab, resulting in zero optical rotation, as is
demonstrated also in Figure 2h. Next we consider the other important polarization-related property,
which is the circular dichroism (CD). A quantity directly related with the CD response is the transmitted
wave ellipticity, η, for a linearly polarized incident wave, which is given by

η = 0.5 sin−1
[
(T++ − T−−)
(T++ + T−−)

]
= 0.5 sin−1

[
1− exp[4k0d(Im(κA) + Im(κB))]

1 + exp[4k0d(Im(κA) + Im(κB))]

]
. (26)

The second right hand side (r.h.s.) of Equation (26) has been obtained employing Equations (12)
and (13), concerning general material parameters in the two slabs. In a chiral PT-symmetric system,
the imaginary part of chirality preserves its sign across the system implying a very strong circular
dichroism (CD), resulting in a large degree of the transmitted wave ellipticity, as shown/confirmed also
in Figure 2h.
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Summarizing, as shown in Figure 2 and discussed also in connection with analytical calculations,
the PT-symmetric features of a chiral PT-symmetric bilayer (i.e., different PT-phases, exceptional point,
structure resonances) are totally independent of chirality. On the other hand, the chirality strongly
affects the polarization state of the wave passing through the bilayer (through its effect to its ellipticity).
This shows that if one has the ability to control separately the system permittivity/permeability and
the system chirality (as is to a large extent possible in chiral metamaterials), one can combine or
superimpose almost at will the PT-related and the chirality-related features, achieving fascinating or
important in applications effects (e.g., CPA-lasing for circularly polarized waves).

3.2. PT-Symmetric Chiral Bilayer under Oblique Incidence: Controlling the PT-Symmetry Phase

As has been already discussed, in the case of waves normally incident on the structure of Figure 1,
the position of EP which characterizes the transition from the PT-symmetric to the PT-broken phase,
is totally independent of chirality. As we discuss in this section, the situation changes for oblique
incidence, where chirality strongly affects the different PT-related phases and the EPs.

Since, as was showed recently [40], transverse electric (TE) and transverse magnetic (TM) polarized
waves are associated with different exceptional points, it follows as a result that for circularly polarized
light under oblique incidence a mixed phase is realizable. Therefore, it is interesting to examine the
different PT-related phases and the phase transitions for CP light obliquely incident on our chiral
bilayer structure. In this case, the transmission and reflection coefficients t(L)+−, t(L)

−+, r(L)++, r(L)
−−

and t(R)+−,

t(R)
−+ r(R)++, r(R)

−−
are not zero anymore, and, hence, the most general scattering matrix, S0 (see Equation

(8)), should be considered [27]. By numerically calculating the eigenvalues of this scattering matrix,
the attainable PT-related phases of the bilayer can be identified.

As an example, we investigate here a system with permittivity and permeability values the
same as in Figure 2 (i.e., εA = 3.0− 0.4i, εB = 3.0 + 0.4i,µA = 1.1− 0.1i,µB = 1.1 + 0.1i). In Figure 3
we plot the eigenvalues of the scattering matrix S0 as a function of the normalized frequency, ωL

c ,
at incidence angle θin = 45

◦

and three different cases regarding chirality: (a) Without chirality
κA = κB = 0, (b) with chirality that respects PT-symmetry (i.e., κA = −0.04− 0.04i,κB = 0.04− 0.04i),
and (c) with κA = −0.06 − 0.02i,κB = −0.04 − 0.01i (i.e., beyond PT-symmetry). It can be observed
that a consequence of obliquely incident waves is the appearance of mixed phases, where one pair of
eigenvalues is unimodular while the other is not. Moreover, in contrast to what happens for normal
incidence, for oblique incidence the positions of the EPs (two in this case) are strongly affected by
chirality. This implies that one important impact of chirality on the PT-related features of our structure is the
tuning of the EPs.
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Figure 3. Eigenvalues (σ) of the scattering matrix S0 for the chiral bilayer shown in Figure 1, for incidence
angle θin = 45

◦

, as a function of the dimensionless frequency ωL/c, where L is the system length and
c the vacuum speed of light. The permittivity and permeability of the two media are as in Figure 2.
Panel (a): Simple PT-symmetric system without chirality. Panel (b): Chiral PT-symmetric system.
Panel (c): Chiral system beyond PT-symmetry κ(−z) , −κ∗(z) (i.e., κA , −κ

∗

B).
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To analyze further the impact of chirality on the different PT–related phases of a chiral bilayer,
we investigate the different PT-related phases for a system with permittivities and permeabilities, as in
Figure 3, by scanning the PT-obeying chirality parameter (both real and imaginary part) at a fixed
frequency, ωL/c = 15.5, and incidence angle θin = 45

◦

. The results for the eigenvalues of the scattering
matrix as a function of chirality are illustrated in Figure 4a. In Figure 4a we can see that, as we increase
the chirality, the system passes from PT-symmetric phase to mixed PT-symmetric phase (light grey)
and, with further increase of the chirality, to PT-broken phase, indicating a possibility of a full control
of exceptional points (EPs) and the associated PT phases by changing the chirality. Surprisingly, it is
possible to achieve analogous control by changing only the real or only the imaginary part of the
chirality, as illustrated in Figure 4b,c, respectively. All of the above reveal a very rich behavior and
possibility for different phases and phase re-entries as one changes the system chirality.
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Figure 4. Eigenvalues (σ) of the scattering matrix S0 at incidence angle θin = 45
◦

as a function of
the chirality parameter, κ, for chiral PT-symmetric systems, as the one shown in Figure 1, and for
dimensionless frequency ωL/c = 15.5. The permittivity and permeability of the two media are as in
Figure 2. Panel (a): Scan of the chirality parameter both real and imaginary parts; Panel (b): Scan of
the real part of the chirality for Im(κ) = −0.04, i.e., Im(κ) ≡ Im(κA) = Im(κB). Panel (c): Scan of the
imaginary part of the chirality for Re(κ) = ±0.04, i.e., Re(κA) = −0.04, and Re(κB) = 0.04.

Although for oblique incidence the PT-related features of a chiral bilayer can be highly controlled
by chirality, chirality cannot offer an external dynamic control. Such a control can be offered by the
angle of incidence, as we show in Figure 5. In Figure 5, we plot the phase diagrams of the same systems
as in Figure 3a (see Figure 5a,b) and Figure 3b (see Figure 5c,d) as we change the incidence angle. As can
be observed there, the frequency positions of the exceptional points and, consequently, the frequency
extent of the different PT-phases are highly dependent on the incidence angle. Moreover, incident
angle controllable mixed phases and phase re-entries (see panel (d)) can be achieved. The possibility of
PT-feature tuning by the incidence angle offers a great and practical way for dynamic control of chiral
PT-symmetric systems.

As was mentioned already, among the interesting and particularly useful characteristics associated
with chiral media are the optical activity and the circular dichroism (CD), which for our double-layer
chiral slab and for normal incidence depend exclusively on the chirality parameter of the two layers
(see Equations (25) and (26)). In the case of oblique incidence, where in the chiral bilayer there are
cross-polarized transmission terms even for circularly polarized incident waves, the optical activity
and the transmitted wave ellipticity (a measure of the CD response) cannot be obtained anymore by the
simple relations (25) and (26). They can be calculated, though, through the Stokes parameters [27,29],
which describe completely the polarization state of a wave. The four Stokes parameters for the
transmitted wave in our case are defined by S0 = E⊥E∗

⊥
+ E‖E∗‖, S1 = E⊥E∗

⊥
− E‖E∗‖, S2 = 2Re

[
E⊥E∗

‖

]
,

and S3 = 2Im
[
E⊥E∗

‖

]
, where the subscript ‖ indicates the transmitted electric field component that lies
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on the plane of incidence, while the subscript ⊥ indicates the perpendicular component. Through
Stokes parameters the optical activity is given by

θ =
1
2

tan−1
(

S2

S1

)
, (0 ≤ θ ≤ π), (27)

and the ellipticity by

η = tan−1

 S3/S0

1 +
[
1− (S3/S0)

2
]1/2

, (−π/4 ≤ η ≤ π/4). (28)
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Figure 5. PT-symmetric system, as the one of Figure 1 (of length L), without chirality (left column) and
with chirality (right column), with permittivity and permeability as in Figure 2. (a,c): Eigenvalues (σ) of
the scattering matrix S0 at incidence angle θin = 39

◦

, as a function of the dimensionless frequency ωL/c,
with c being the vacuum speed of light. (b,d): Phase diagrams showing the different attainable phases
for different incidence angles. Red and green lines indicate the positions of the exceptional points.
The horizontal dashed lines in (b,d) indicate the incidence angle considered in plots (a,c), respectively,
and their crossings with the vertical dashed lines correspond with the exceptional points of (a,c).

To be able to calculate θ and η employing the above formulas and to have a full picture for
our system potential for polarization manipulation, one needs to calculate the scattering coefficients
(transmission and reflection) for linearly polarized incident waves. These coefficients can be directly
obtained from the circularly polarized reflection and transmission data according to the equations [30](

t‖‖ t‖⊥
t⊥‖ t⊥⊥

)
=

1
2

(
(t++ + t−−) + (t+− + t−+) −i[(t++ − t−−) − (t+− − t−+)]

i[(t++ − t−−) + (t+− − t−+)] (t++ + t−−) − (t+− + t−+)

)
(29)

and (
r‖‖ r‖⊥
r⊥‖ r⊥⊥

)
=

1
2

(
(r+− + r−+) + (r++ + r−−) −i[(r+− − r−+) − (r++ − r−−)]

i[(r+− − r−+) + (r++ − r−−)] (r+− + r−+) − (r++ + r−−)

)
. (30)

In Equations (29) and (30), as in the Stokes parameters, the subscripts ‖ and ⊥ indicate the
components parallel and perpendicular to the plane of incidence, respectively, while, as in the circular
polarization case, the first subscript refers to the transmitted (or reflected) component and the second
to the incident one.

In Figure 6, we show the transmitted and reflected power coefficients (Ti j =
∣∣∣ti j

∣∣∣2, Ri j =
∣∣∣ri j

∣∣∣2,
i, j = {‖,⊥}, respectively) for linearly polarized waves as well as the corresponding optical activity
and ellipticity for the chiral PT-symmetric system examined in Figure 2 under oblique incidence. In
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particular, we present those quantities at ωL/c = 15.5 as a function of chirality (left two columns) and
as a function of the incidence angle (right two columns), keeping all the other parameters constant.
Our results reveal a very rich behavior of propagation characteristics, including asymmetric (i.e., side
dependent) transmission (note the asymmetry in the T‖⊥ between panels (a) and (e), and between (i)
and (m); also the asymmetry in T⊥‖ between panels (c) and (g) and between (k) and (o)), asymmetric
reflection (compare R⊥⊥ in panels (a) and (e), and in panels (i) and (m), as well as R‖‖ in (c) and (g) and
between (k) and (o)), as well as asymmetric optical activity, and ellipticity (compare panels (b), (d), (j),
(l) with (f), (h), (n), and (p), respectively). Moreover, as can be seen in Figure 6, all the above mentioned
asymmetric effects are not only chirality dependent but also angle dependent, offering additional
degrees of freedom for controlling the scattering and polarization properties of electromagnetic waves.Photonics 2020, 7, x FOR PEER REVIEW 13 of 15 
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Figure 6. Reflection (R), transmission (T), optical activity (θ), and ellipticity (η) for a linearly polarized
plane wave incident at both sides of a chiral bilayer, as the one of Figure 1, with permittivity and
permeability values as in Figure 2, at ωL/c = 15.5 as a function of the chirality parameter κ (left
two columns) and as a function of incident angle (right two columns). Note that κ here denotes
the absolute value of both real and imaginary part of the two layers A, B (i.e., κA = κ − iκ and
κB = −κ − iκ). The subscripts ‖ and ⊥ in the transmission and reflection indicate the components
parallel and perpendicular to the plane of incidence, respectively, while the first (second) component
indicates the output (input) wave polarization. The coefficients R and T are the squared magnitude of
the corresponding coefficients (r and t) of Equations (29) and (30).
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4. Conclusions

We investigated the effects of combining PT-symmetry and chirality in the same system. Starting
by showing that such a combination is possible (despite the mirror-asymmetry of the chiral media)
and by deriving the necessary conditions, we applied those conditions in a simple chiral bilayer and
we investigated its different PT-related phases and its scattering- and polarization-related properties.
In the case of normally incident electromagnetic waves, we found that the PT-symmetric features (e.g.,
exceptional points, PT-phases, etc.) are not affected at all by chirality; as a result PT-symmetric and
chiral effects can be controlled simultaneously and independently. In the case of oblique incidence,
though, chirality highly affects the PT-symmetry related properties. In that case we showed that a full
tuning of PT phases and scattering properties of our systems can be realized both by scanning the
chirality parameter and/or the angle of incidence of the incoming waves. Moreover, we showed that by
combining PT-symmetry with chirality we can achieve exotic propagation and scattering functionalities,
such as asymmetric (side-dependent) transmission, ellipticity, and optical activity. All the above effects,
which are possible with chiral metamaterials (see, e.g., [26] for realistic systems), can be exploited
in a wide range of applications, in particular in applications where advanced polarization control
is required, offering either novel possibilities (e.g., lasers/absorbers of circularly polarized waves)
or novel optimized approaches to existing possibilities/devices (e.g., tunable polarization filters or
wave-plates of highly-reduced thickness compared to the existing ones).
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