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We present a three-dimensional (3-D) finite-difference time-domain (FDTD) analysis of the transmission and
the waveguiding properties of dielectric structures of finite height. A two-dimensional (2-D) photonic-crystal
geometry is used for lateral confinement, and traditional waveguiding by dielectric mismatch is used for ver-
tical confinement. We investigate different types of waveguide in photonic crystals with a finite height. We
examine the dependence of the guiding properties on the lengths of the holes that constitute the photonic crys-

tal and the widths of the layers of the waveguide.

The role of the filling ratio of the holes and the dielectric

constants of the upper and the lower layers for the guiding properties is presented. Also, a comparison be-
tween the 3-D and the 2-D FDTD results is given. © 2002 Optical Society of America

OCIS codes: 230.7370, 130.2790, 160.3130, 250.5300.

1. INTRODUCTION

The discovery of photonic crystals'™ (PCs), i.e., periodic
dielectric structures that exhibit bandgaps in their spec-
tra, has opened new ways for efficiently controlling the
propagation of light. Examples of such structures are PC
waveguides,>® i.e., the guides formed as linear defects in
PC structures. Light in the PC waveguides is confined
to, and guided along, the one-dimensional channel be-
cause the PC prevents light from escaping into the bulk
crystal. This property allows light to bend through sharp
corners.” 13

However, it is still difficult to fabricate three-
dimensional (3-D) structures at optical wavelengths.*141?
Recently, full confinement of electromagnetic waves in the
microwave region was demonstrated experimentally by
use of a layer-by-layer structure.!'6 Although Noda
et al.™* fabricated a 3-D sharp-bend waveguide in the
layer-by-layer structure at optical wavelengths, no mea-
surements have been reported yet. Because fabrication
of 3-D photonic crystals at optical wavelengths is still a
difficult process, an alternative method has been
proposed.1’2° A three-layered dielectric structure is cre-
ated in the vertical direction, with the central layer hav-
ing a higher dielectric constant than the upper and the
lower dielectric layers. In such a structure light is con-
fined in the vertical direction by traditional waveguiding
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with dielectric index mismatch and in the lateral direc-
tion by the presence of a two-dimensional (2-D) photonic
crystal. Two kinds of structure have been used: one in
which the upper and the lower dielectric layers are air
and another in which the upper and the lower dielectric
layers have dielectric constants that are smaller than
that of the central layer but much greater than 1. The
first structure is called a self-supported membrane, and
the second is referred to as a regular waveguide. Which
structure has lower losses has not yet been resolved.?® It
is clear, however, that for optoelectronic applications the
membrane-based PCs might be not easy to use. It is
therefore of considerable importance to find out what type
of structure has the lowest losses and produces the best
efficiency of bends.

In this paper, we present a detailed finite-difference
time-domain  (FDTD) analysis of finite-height
waveguides. The structures that we analyze consist, in
most cases, of three layers of dielectric materials (see
Fig. 1). The central layer is chosen to have a high dielec-
tric constant, corresponding to that of either GaAs or
GalnAsP. The upper and the lower layers are either
identical, to simulate a symmetric waveguide, or differ-
ent, to simulate an asymmetric guide. The width of the
layers is varied. These three-layered waveguide slabs
are patterned with a triangular lattice of air holes of vari-
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Fig. 1. Three-layer waveguide slab with (a) a PC and (b) a W1
guide (a PC waveguide formed by removing one row of holes from
the PC).

able depth. The role of the depth of the holes and their
filling ratio in waveguiding and in out-of-plane losses is
examined. In addition, the transmission properties of
waveguides for which one line of air holes in missing [see
Fig. 1(b)] are studied. Finally, a comparison of the 2-D
and the 3-D FDTD results is given.

The paper is organized as follows: In Section 2, we
present the parameters of our structures and explain the
FDTD numerical method that is used to solve Maxwell’s
equations. We discuss the role of the source and correct
detection on the transmission coefficient. In Section 3,
we present the results for the cases examined: (a) a
GaAs slab sandwiched between air on the top and Al,O,
on the bottom, (b) a GaAs slab sandwiched between two
identical thick layers of GaAlgyAs, and (¢) a GalnAsP slab
sandwiched between two (different in thickness) layers of
InP. In all these cases a 2-D hexagonal lattice of circular
air holes was etched. We vary the depth and the radius
of the holes such that we can investigate the performance
and the guiding properties of the waveguides. In Section
4, we present a comparison of the 3-D results with an ef-
fective 2-D system, and, finally, in Section 5, we briefly
sum up our results.

2. GEOMETRY AND THE NUMERICAL
METHOD

In Fig. 1, we present a view of a three-layer dielectric
waveguide. In Fig. 1(a) a three-layer slab waveguide is
used to provide vertical confinement of the wave. In Fig.
1(b) there is 3-D confinement: vertically because of the
three-layer slab and horizontally because of the PC wave-
guide formed by the filling of one row of air holes of the
PC. In the present paper, we call this PC guide a W1
guide.

Inasmuch as we are interested in guiding properties,
we employ the FDTD method in our studies. The FDTD
enables us to obtain the transmission coefficient easily
through finite slabs of the structures studied and thus to
reproduce the results of real experiments.

For the implementation of the FDTD, we follow Yee’s
algorithm, which is described in detail in Ref. 31. We
start from the two Maxwell equations

JH
VXE=— —,
Mo ot
JE
VX H= eeyg—, (1)
Jt
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where € is the modulated dielectric constant, w is the
magnetic permeability, and €, and u are the vacuum per-
mittivity and permeability, respectively. For simplicity,
we assume that the dielectric medium is lossless (e is
real), and we fix the magnetic permeability (u) to 1. (It
should be mentioned that, even though we use only two of
Maxwell’s equations, the numerical solutions satisfy all
four of Maxwell’s equations.?!) In the framework of the
FDTD the real space is discretized in a cubic grid that
stores the dielectric constant and the field (E and H) com-
ponents. The space and the time derivatives are re-
placed by central differences, and by use of a finite time
step the fields are recursively updated on every grid
point. The FDTD algorithm thus reproduces numerically
the propagation of the electromagnetic field in real space
and time through the waveguide structure.

Because it is not possible to extend the computational
system to whole space, we truncate the grid soon after the
PC structure and, at the edges, to prevent backreflection,
we update the fields by using Liao boundary conditions.??

In the research reported here, we choose a computa-
tional mesh with a pitch of 1/14th of the PC lattice con-
stant in the xy plane and of 1/14th of the thinner layer in
the z direction (unless otherwise explicitly stated). This
pitch is approximately 1/14th of the wavelength of inter-
est, which guarantees satisfactory accuracy. The 3-D al-
gorithm places stronger requirements on computational
memory and time. The computer memory required for
these 3-D calculations is proportional to N,N,N_, where
N,; (i = x, y, z) is the number of grid cells in each direc-
tion.

Special attention is paid to the choice of an appropriate
source, as our aims are to avoid the excitation of leaky
modes that are lost in the top layer and in the substrate
and to excite only the fundamental guided mode of the
unpatterned slab. To achieve our objectives, we use a
spatially extended source covering the entire plane per-
pendicular to the propagation direction. The source field
has a Gaussian spatial profile and is a pulse with a
Gaussian envelope in the time domain. As we are inter-
ested in transmission properties, by using a pulse, we are
able to cover a wide range of frequencies simultaneously.
To introduce the source into the calculation, we use the
total-field—scattered-field formulation (see Ref. 31, p.
111): We divide the space into two distinct regions sepa-
rated by a plane of grid points that is perpendicular to the
propagation direction. On one side of such a plane Yee’s
algorithm operates on the total field vector components,
and on the other side it operates on only the scattered-
field vector components. The source is added onto that
plane in the form of incident E and H. If we assume that
y is the propagation direction, the incident E component
has the form

Einlx, y, 2, t)
= sin{w[nyo/c — (£ = to)]}
X exp{—b*[nyo/c — (¢t — to)]*}
X exp[ —b,*(x — x)*lexp[—b.%(z — 20)*]. (2)

The parameters x, and z, define the centers of the
Gaussians in the xz plane, and b, and b, are the corre-
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sponding widths. y, marks the position of the source in
the propagation direction (usually a half-lattice constant
before the PC), w is its central angular frequency, ¢, is a
time parameter such that the pulse does not reach its
maximum value immediately, b, determines the width of
the pulse in the time as well as in the frequency domain,
and n = Je is the refractive index of the medium. The
source described above gives beams with satisfactory di-
rectionality; thus only a small amount of power moves
away from the desired direction. In all the cases that we
present here, we have considered a TE incident wave; i.e.,
the incident electric field is parallel to the layers (E;,,
= E,). The incident magnetic field is obtained from
H,. = [n/(uuee)]J X E;.), where ] is the unit vector in
the propagation direction.

The numerical simulation consists of sending the input
pulse into the waveguide structure and obtaining the
electric and the magnetic field components as functions of
time at certain points (detectors) at the beginning and at
the end of the waveguide structure. Then the field com-
ponents are transformed into the frequency domain by
use of a fast Fourier transform, and the Poynting vector is
calculated. The transmission is given by the ratio of the
outgoing and the incident Poynting vectors (the vector’s
component that is parallel to the propagation direction).
It must be mentioned that in calculation of the transmis-
sion though a PC structure, the incident Poynting vector
is calculated without the presence of the PC (to avoid mix-
ing of incident and reflected waves). For the detection of
the fields, we use approximately 100 point detectors that
cover almost all the xz face of the slab. The outgoing and
the incident Poynting vectors are obtained as the aver-
ages of the Poynting vectors of all the detectors.

3. RESULTS

In this section, we present results for the three cases
studied.

A. Case A: GaAs Slab Waveguide with Air Cladding
on the Top and Al,O,, on the Bottom

The first case is that which was studied by the Sandia and
the MIT groups.?2?® The GaAs layer has a width of 200
nm, with a dielectric constant of € = 11.56. For the bot-

IO.Z

60

y axis

(a)

. .
0.15
0
. | 3 0.1
40
2 0.05
% 60 120

Kafesaki et al.

tom layer (Al,O, with practically infinite width) e
= 2.25. AlO, is converted from Aly¢Gay;As by wet
oxidation.??=? " The computational cell in our calculation
consists of 8 X 8 unit cells.

To check whether indeed our incident pulse is close to a
waveguide mode!®122633-35 of the layered heterostruc-
ture (without air holes), first, we present the results for
the absolute value of the electric field over a yz cross sec-
tion of the slab at two different times, ¢; and ¢5. From
Fig. 2, we can clearly see that the profile of the incident
pulse remains the same as the pulse propagates along the
waveguide, as we can verify quantitatively by calculating
the y component of the Poynting vector, S, , close to the
source and at the other end of the waveguide. From Fig.
3, we can see that, indeed, the ratio of these Poynting vec-
tors is close to 1 for all the frequencies a/\, where \ is the
incident vacuum wavelength and ¢ = 400 nm.

Thus both the spatial and the temporal widths of the
source describe our system well. The next important test
is to see whether our pulse retains its shape as it encoun-
ters the 2-D hexagonal PC. This PC has a lattice con-
stant of a = 400nm and an air-filling factor of f
= 32.6% [f = (27//3)r%/a2, where r is the radius of the
holes], and the depth d; of the holes into the Al,O, sub-
strate is d; = 300 nm. These parameters were chosen to
give a photonic bandgap (PBG) within the guided-mode
region.?27262% In Fig. 4, we present the field [E| over a yz
cross section of the slab waveguide, but now with the air
holes, at time ¢, .

In this case, because of the air holes, there is scatter-
ing, and the pulse does not retain its shape. However,
there is still mostly propagation in the central (guiding)
layer, and the losses are due to the mode mismatch be-
tween the PC mode and the incident guided mode of the
unpatterned slab. By taking the Fourier transform of
the fields, we can calculate the transmission coefficient
(as was described in Section 2). In Fig. 5 (dashed curve),
we present the transmission coefficient plotted versus the
dimensionless frequency a/\ for propagation over the 'K
direction. We can clearly see the width of the PBG. The
position as well as the width of this gap are in very good
agreement with the corresponding experimental
values.2>% Forming a W1 guide in this PC and calcu-
lating the transmission, we obtain what is shown by the

8
6

y axis

(b)

Fig. 2. Field [E| over a yz cross section of the layered structure described for case A (without a PC) at two different times [¢; = ¢, (top)
and t, = 2t, (bottom); ¢, ~ 28 X 10 1% s]. Horizontal lines show the layer interfaces. The units on the axis are grid cells (dy,dz):

dy = a/13, dz = a/26; a = 400 nm.
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Fig. 3. (Normalized) component of the Poynting vector in the di-
rection of propagation (y) for the layered structure described for
case A (without a PC). S,; is the component close to the source,
and S, is the component away from the source. \ is the free-
space wavelength, and ¢ = 400 nm.
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Fig. 4. Field |E| over a yz cross section of the structure described
for case A (three-layer structure with a PC) at ¢ = 56
X 107% s, Solid horizontal lines show the layer interfaces;
dashed line shows the bottom of the air holes. The units on the
axis are grid cells; for the y axis 1 grid cell = dy = a/13; for the
z axis dz = a/26. a is the lattice constant (400 nm). Our com-
putational cell consists of eight lattice constants in the propaga-
tion direction and eight in the perpendicular direction.

solid curve of Fig. 5. It is easy to see that transmission
through the W1 guide is quite high for almost the entire
frequency regime of the PC gap.

B. Case B: GaAs Slab Waveguide with GaAlg As
Semiconductor Cladding on Both Sides
In the second case the width of the GaAs layer is 220 nm,
with a dielectric constant of e = 12.336. The width of
the cladding is practically infinite, with € = 9.634. The
lattice constant of the triangular lattice formed by the air
holes is a = 420 nm, and the air-filling factor is f
= 40%. In our calculations the computational cell con-
sists of seven lattice constants a in the propagation direc-
tion (I'K direction) and nine lattice constants a /3/2 in the
perpendicular direction.

Here, because the refractive-index contrast between
the guiding layer and the claddings is low, the guided
mode of the layered heterostructure (with no air holes) is
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not strongly confined in the guiding layer (as in case A).
This can be seen from Fig. 6 in which we present the field
|E| over a yz cross section of this layered heterostructure
at a specific time.

Again, we use a Gaussian pulse that approximates the
guided mode of the unpatterned waveguide, which is
weakly confined in the GaAs layer. This approach is
used to minimize the excitation of leaky modes. From a
triangular array of air holes in the heterostructure, we
obtain either a PC or a W1 waveguide. This system does
not support truly (lossless) guided modes in the PBG
region.?? Therefore a PC mode propagating through the
heterostructure will undergo out-of-plane losses. The
transmission through the PC and the W1 for d,
= 400 nm has the form shown in Fig. 7(a). As we move
to hole depths larger than 400 nm, the transmission in-
creases, although not much.

Our next step is to compare the transmission for cases
A and B as it relates to the presence of the PBG structure.
We cannot do so by directly comparing the transmissions
shown in Figs. 5 and 7(a) because in both figures the
losses are due not only to the PC but also to mode mis-
match. For both cases A and B there are two occurrences
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Fig. 5. T'K transmission coefficient 7" plotted versus dimension-
less frequency a/\ for the three layer structure that is described
for case A with a PC (dashed curve) and with a PC with a W1
guide (solid curve). a is the lattice constant, and \ is the free-
space wavelength.
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Fig. 6. Field [E| over a yz cross section of the layered structure
described for case B (three-layer structure without a PC) at ¢
= 15 X 107% 5. Horizontal lines show the layer interfaces.
The units on the axis are grid cells (dy,dz): dy = a/14, dz
= a/28; a = 420 nm.
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Fig. 7. (a) 'K transmission coefficient (7)) versus dimensionless
frequency a/\ for the structure described for case B. The source
is a Gaussian pulse with a vertical profile that approximates the
layers’ guided-mode profile. Dashed curve shows the transmis-
sion for a PC; solid curve shows the transmission for a PC with a
W1 guide. The cylinder’s depth in the substrate is 400 nm. a is
the lattice constant, and A is the free-space wavelength. (b)
Same as in (a) but here we calculate the transmission by normal-
izing the transmitted power by the power transmitted through
the layered heterostructure (the structure without PBG mate-
rial).

of mode mismatch: one for the transition Gaussian
source—guided mode of the unpatterned waveguide and
the other for the input—output of such a guided mode to
and from the PC or the W1. Each mode mismatch causes
reflection and out-of-plane losses. We decided to compare
cases A and B, eliminating only the effect of the coupling
Gaussian source—guided mode. We can do this by calcu-
lating the transmission 7, using a different normaliza-
tion: normalizing the transmitted power not by the inci-
dent power but by the power transmitted through the
unpatterned heterostructure. Using this normalization,
we obtain, for case A, a result similar to that of Fig. 5,
whereas, for case B, the result is what is shown in Fig.
7(b). Note that the T given in Fig. 7(b) is considerably
higher than that presented in Fig. 7(a). Comparing Figs.
7(b) and 5, we see that the two transmissions are compa-
rable. This is an interesting result, which suggests that
one can obtain appreciable transmission by patterning
the PBG structure in a three-layer system with compa-
rable dielectric constants (as in case B).

C. Case C: GalnAsP Slab Waveguide with InP
Semiconductor Cladding on Both Sides

In case C the central layer is GalnAsP; its width is 434
nm, and its dielectric constant is e = 11.2225. The bot-
tom InP layer has a practically infinite width, and e
= 10.0489. The top InP layer has a width of 200 nm and
is covered by air (e = 1). The lattice constant of the PC
is @ = 420 nm, and the depth of the air holes inside the
InP substrate is either 400 or 600 nm. The computa-
tional cell in our calculations consists of seven lattice con-
stants in the propagation direction (I'K) and nine in the
perpendicular direction. We studied three air-filling fac-
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tors /2 30%, 40%, and 45%. As for case B, this PC does
not support truly (lossless) guided modes in the PBG
region.??

In all the cases studied, we used as the incident wave a
Gaussian pulse whose vertical spatial profile approxi-
mates the profile of the guided mode of the layered het-
erostructure. The approximation of the guided-mode
profile with a Gaussian cannot be good in this case be-
cause the guided mode is slightly asymmetric. The air
layer above the thin top layer leads to stronger confine-
ment of the wave above than below the guiding layer, as
one can see from Fig. 8(a), in which we show the absolute
electric field over a yz cross section of the layered hetero-
structure (with no air holes). In Fig. 8(b) we show the
Poynting vector component in the direction of propagation
both close to the source and away from the source for this
structure. The proximity of the two curves in Fig. 8(b)
shows that, despite the asymmetry of the guided mode, its
approximation to a Gaussian is not bad.

Forming a PC of air holes (in triangular arrangement)
with f = 40% and plotting the electric field for a hole
depth in the substrate of 400 nm, we see that there is a
considerable amount of wave that is lost in the sub-
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Fig. 8. (a) Field |E| over a yz cross section of the layered struc-
ture described for case C (without a PC) at time ¢ = 80
X 1071 s,  Horizontal lines show the layer interfaces. The
units on the axis are grid cells (dy,dz): dy = a/14, dz = a/28;
a = 420 nm. (b) Poynting vector component in the propagation
direction close to the source and away from the source for the
system described for (a).
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Fig. 9. Field [E| over a yz cross section of the layered structure described for case C (with a PC) at time t = 60 X 10 15 s,
Dashed horizontal lines indicate lengths of the holes.

zontal lines indicate layer interfaces.

d, = 400 nm and (b) d, = 600 nm. The units on the axis are grid cells (dy,dz):

strate in the form of leaky modes [Fig. 9(a)]. Making the
holes 200 nm deeper results in a reduction of the losses,
as can be seen from a comparison of Fig. 9(a) with Fig.
9(b). This can also be verified quantitatively by calcula-
tion of the corresponding transmission coefficients. In
Fig. 10(a), we present the I'K transmission coefficient for
a PC and for a W1 guide for holes 400 nm deep in the sub-
strate; in Fig. 10(b) this depth is 600 nm. Comparing
Figs. 10(a) and 10(b), we can see that going from 400 to
600 nm increases the transmission (owing to the decrease
of the out-of-plane losses), especially in the lower-
frequency regimes.

In Fig. 11, we show the yz (vertical) profile of the guided
wave for a W1 guide in a PC of f=40% for d;
= 600 nm. Here again we see the asymmetry of the
guided mode with respect to the center of the guiding

1 —
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Fig. 10. T'K transmission coefficient T versus dimensionless fre-
quency a/\ for the structure of case C, with an air filling ratio of
f = 0.4. Dashed curves show the transmission for a PC; solid
curves show the transmission for a PC with a W1 guide. The
cylinder’s depth in the substrate is 400 nm for (a) and 600 nm for
(b). ais the lattice constant, and \ is the free-space wavelength.
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Solid hori-

The hole depth in the InP substrate is (a)
dy = a/14, dz = a/28; a = 420 nm.

layer and the fact that the power that is lost in the sub-
strate is greater than the power lost in air.

Calculating the transmission coefficient for the InP sys-
tem and for air-filling ratios f that are different from 40%,
we found that the optimum f for broadband and consider-
able guiding is 40%—45%. In Fig. 12, we show the 'K
transmission for f = 30% [Fig. 12(a)] and for f = 45%
[Fig. 12(b)], both for d, = 600 nm.

4. COMPARISON OF TWO-DIMENSIONAL
AND THREE-DIMENSIONAL RESULTS

Obtaining numerical results by use of the 3-D FDTD
method is time and memory consuming. Therefore it
would be very interesting and useful if one could approxi-
mate the 3-D problem of the finite-height cylinders with a
2-D model (infinite-height holes).

To this purpose,'® we have to consider a host material
with an effective refractive index (equal to the refractive
index of the guided mode of the layered heterostructure;
this condition accounts for the fact that there is guiding in
the vertical direction as a result of the presence of differ-
ent layers) and a loss parameter for the holes (to repre-
sent the out-of-plane losses). The loss parameter can be
an imaginary part in the holes’ dielectric constant or,

100

Z Axis

80 100 120 140

Y Axis

Fig. 11. Field |E| over a yz cross section of the structure de-
scribed for case C (layered structure with a W1 guide) at time ¢
= 80 X 107 s. Solid horizontal lines show the layer inter-
faces. Dashed horizontal line shows the depth of the holes.
The holes’ depth in the InP substrate is d; = 600 nm. Units on
the axis are grid cells (dy,dz): dy = a/14, dz = a/28; «
= 420 nm.

20 40 60
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Fig. 12. TK transmission coefficient 7' versus dimensionless fre-
quency a/\ for the structure of case C, with air-filling ratios of (a)
f = 0.3 and (b) f = 0.45. Dashed curves show the transmission
for a PC; solid curves show the transmission for a PC with a W1
guide. The holes’ depth in the substrate is 600 nm. a is the
lattice constant, and \ is the free-space wavelength.
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0.15 0.2 0.25 0.3 0.35 04
a/\

Fig. 13. T'K transmission coefficient T' plotted versus dimen-
sionless frequency a/\ for a system of infinite air cylinders (with
dielectric constant 1 + ie€;,,) in a host with € = 11.56. (a) €,
= 0, (b) €, = 0.22. Dashed curves show the transmission for a
periodic system; solid curves show the transmission for a W1
guide. a is the lattice constant, and A is the free-space wave-
length. The air-filling ratio is f = 0.4, and the grid’s pitch is
al/34.
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equivalently, a finite conductivity.?* In what follows, we
present 2-D FDTD results based on the above consider-
ations for the systems described for cases B and C. We
compare them with the corresponding 3-D results and ex-
amine how and to what extent a 2-D calculation can re-
place a 3-D calculation.

For the GaAs structure of case B the effective dielectric
constant that we use for the 2-D calculations is €
= 11.56. The 2-D FDTD results for the transmission
through a triangular periodic lattice and through a W1
guide are shown in Fig. 13. For the InP structure of case
C, e = 10.5, and the 2-D FDTD results are shown in Fig.
14.

In the 2-D calculations for the purely periodic case, we
use a source with a constant profile in the direction per-
pendicular to the propagation and in Bloch’s boundary
conditions at the boundaries parallel to the propagation
direction. For W1 the source is the output of a ridge ac-
cess guide of width w =~ 1.1a (note that this kind of
source cannot be used in 3-D calculations because of the
large memory requirements). For both the W1 and the
periodic cases, the computational cell consists of seven air
cylinders in the propagation direction, and the pitch of
the grid is the 1/34th of the lattice constant.

Comparing Fig. 13 with Fig. 7(a) and Fig. 14 with Fig.
10, we can make the following observations: (a) The 2-D
transmission is considerably larger than the correspond-
ing 3-D transmission because no out-of-plane losses are
included in the 2-D calculation. (b) With regard to the
position and the width of the PBG the approximation of a
3-D calculation with an equivalent 2-D calculation seems
to produce extremely good results. The widths of the 3-D
and the 2-D gaps are almost the same, and the positions
of the gaps are only slightly different. The situation,
however, can be further improved, and a simultaneous
gap width and position coincidence between 2-D and 3-D
results can be achieved. This can be done if we consider,
in addition to an effective dielectric constant, an effective
air-filling ratio £.2° In Fig. 15, we present, for the system
of case C, the dependence of the upper and the lower
edges of the 2-D gap on the air-filling ratio. We can see
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Fig. 14. Same as in Fig. 13 for a host with dielectric constant
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Fig. 15. Upper (filled circles) and lower (open circles) edges of
the 2-D gap plotted as a function of ratio r/a for the system
shown in Fig. 14. The two gap edges are calculated by the
plane-wave method.? Dashed horizontal lines show the upper
and the lower edges of the 3-D gap for an air-filling ratio of f
= 40%.

that, at r/a =~ 0.35 (f =~ 0.44), both the position and the
width of the 2-D gap coincide with those of the 3-D gap for
f = 0.40.

5. CONCLUSIONS

We have numerically studied the transmission and the
waveguiding properties of 2-D PC dielectric heterostruc-
tures by using a 3-D FDTD method. We have examined
systems that exhibit strong (case A) and weak (cases B
and C) confinement in the vertical direction. For case A,
the PC supports truly guided modes, but the transmission
is reduced by mode mismatch (nonoptimal coupling effi-
ciency). For the other two cases the out-of-plane losses
are unavoidable. Nevertheless, the transmission can be
fairly high, as the etch depth is larger than a critical
value (Fig. 10). The transmission coefficient through a
W1 waveguide can be as high as 70% [Fig. 11(b)] for the
GalnAsP slab waveguide with InP semiconductor clad-
ding on both sides.

Finally, we have compared our 3-D FDTD results with
2-D results that were obtained by use of both an effective
index of refraction and an effective filling ratio. Close
agreement between the 3-D results and the effective 2-D
results was obtained.
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