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Abstract. We review and analyze some of the novel and unique characteristics of the 
electromagnetic wave propagation in materials of both negative electrical permittivity and 
magnetic permeability, known as left-handed materials. Main steps and recent developments 
towards the realization and exploitation of such materials are described, while emphasis is 
given to the attempts for “extension” of left-handed materials towards the optical regime. 
There, some of the main advances and challenges are analyzed and discussed. 
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I.    Introduction  
 

Electromagnetic (EM) waves as carriers of information and energy are of central importance 
in our lives from biological, technological, and scientific points of view. Thus: Energy and 
information (negentropy) is transferred from the Sun to the Earth through EM waves, 
providing the necessary requirements for the development and sustaining of living 
organisms. Various objects are visible because they reflect EM waves which in turn are 
processed in our eyes, in the optical nerves and finally in our brains. Telecommunication 
devices (radios, TVs, mobile telephones, etc) are connected through EM waves. Medical 
information regarding the functioning (and malfunctioning) of various organs are obtained 
through EM waves (MRI, X–ray tomography, etc). Tremendous amount of information 
about the present state and the history of the Cosmos beyond our planet are collected again 
by EM waves from the radio frequencies to X–rays and beyond. 

To employ EM waves it is necessary to have properly assembled matter (biologically 
or technologically) which, through its interaction with EM waves, can emit, receive, store, 
process, and allow retrieval of information and energy. Hence there is a never ending quest 
for new forms of matter (or combinations of existing materials) beyond those which nature 
and present day technology offers us. 

It is worthwhile to point out that the interaction of EM waves with matter (in all its 
forms) takes place almost exclusively through the electric component of the electromagnetic 
field; the magnetic component of the EM field does not produce usually an appreciable 
response. This is so because the force exercised on a charged particle by the magnetic 
component of the field is of the order / c  relative to that of the electric component, where 
  is the velocity of the particle and c is the velocity of light in the vacuum. As a result, the 
response of a material to the magnetic field as measured by the magnetic susceptibility,  , is 

of the order of 2 2 5/ ~ 10c  . One way to beat this intrinsic small factor is to have a 
collective response, as, e.g., in ferromagnets; however, even in this case the strong response 
dies out as the frequency of the EM field is raised beyond a few tens of a GHz. Another way 
to have a strong magnetic response is to operate under strong resonance conditions, which 
may produce a   vs.   dependence as shown in Fig. 1.  
 

 
Fig. 1. Typical resonance response of the real and imaginary part of the magnetic susceptibility 

vs. frequency. At the resonance frequency,  , m  has a maximum and Re  passes through 

zero. 



If the losses associated with the resonance are very small the peak of the m  
becomes very narrow and the absolute value of the maximum and the minimum of the Re  
becomes very large, even larger than one. In this case the real part of the relative 
permeability ˆ / 1       can take values around the resonance ranging from larger 

than two to smaller than zero ( ̂  is the magnetic permeability and   is the permeability of 

the vacuum). 
Keeping in mind this possibility of strong magnetic response, let us return to the 

electric response of a homogeneous material, which is mainly characterized by the so called 
dielectric function or relative permittivity, ˆ / e e e , where ê  is the permittivity and e  is 

the vacuum permittivity; e  is in general a function of both the frequency,  , and the 
wavenumber, k , (for a homogeneous and isotropic medium) and it has a real and an 
imaginary part. For a non-polar dielectric e is larger than one and usually almost constant up 
to frequencies in the near ultraviolet. For metals the dielectric function is of the form1, 2   
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where  0 1 b e e , and be  is the contribution of strongly bound electrons; 
 02 2 /p e e oe n m  e e , where en  is the concentration of “free” electrons, me is the electron 

mass and   is the relaxation time. 
The phase velocity of EM waves in a homogeneous medium characterized by e and 

 is given by 
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For a typical dielectric e  is positive and larger than one,   is very close to one, the index of 

refraction, n , is positive and larger than one, and p  is smaller than c . For a metal and for 

p  ,   0 e ,   is usually almost one, e  is negative, n  is imaginary and the EM 

waves decay exponentially with a characteristic length2, 3, 4 /d c  e . These 

characteristic cases are summarized in Fig. 2.  

Fig. 2. Omitting the Ime  and m , the e ,   plane is separated in four quadrants. The third one 

( 0  , > 0e ), even if it is realized, leads to decay, and hence, it presents no interest form the point of 
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view of optics. The fourth quadrant ( 0  , < 0e ),  for which 0 e , allows propagation, possibly, 

a novel one5. 
 

II.    EM waves in a medium where 0   and < 0e  
 

By writing the components of the EM field as2 
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we obtain from the Maxwell curl equations that 
 o k E H , (5) 

   k H Eoe e . (6) 

Eqs. (5) and (6) show that the system k , E , H  is left-handed (LH) if   and e are 
negative5, while it is right-handed (RH) in the usual case where e and   are positive. 
By cross multiplying (5) by E  and (6) by H  and by time averaging, we have  
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from which it follows that 
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The time-averaged energy flux density, S , is given either by the product guυ , where 

u is the time-averaged energy density and gυ is the group velocity*, or by the time-averaged 

Poynting vector, 
 g o ou  S υ E H . (9) 

By combining (7) and (9) we obtain 
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Eqs. (10) and (11) show that the propagation of phase, as determined by k , is in the 
opposite direction of the propagation of energy, as determined by S  or gυ (since   and 

e are negative), or, equivalently, pυ  and gυ  are opposite to each other. 

An immediate consequence of (10) and (11), combined with the conservation of the 
parallel component of k  at a planar interface, is that the refraction at such an interface 
between a material with e ,  positive and a material with e ,  negative is as shown in Fig. 
3. Hence, when , 0 e , the index of refraction n  must be the negative square root of e : 

n   e . 

                                                 
* Providing not strong resonance conditions, such that the group velocity represents the velocity of the energy 
propagation. 



Fig. 3. Reflection and refraction at the interface of a right-handed material ( , 0 e ), like air, 

and a left-handed one ( , 0 e ). The conservation of the parallel component of k in 

combination with Eq. (10) or (11) leads to a negative value of 2 , satisfying Snell’s law, 

1 1 2 2sin sinn n  ,  with 2n  (n in the figure) negative. 

 
From the equations (3) to (11) one can show that3, 4 

 
  1 / /

p
g n n 


  

υ
υ , (12) 

 
   2 21

2
o

o ou E H
  

    

 
 

oee
, (13) 

 2 2
2 2 o o oE H

c

       
  

 
k

p S o
e e

e , (14) 

where p  is the time-averaged momentum density. To obtain (14) we have used also the 

relativistic equation pu p , connecting the energy density, u , with the momentum 

density, p . 
This brief analysis shows that EM wave propagation in a medium with both e  and   

negative exhibits novel and unexpected features, such as5: 
(a) The triad k , E , H  is left-handed. 
(b) Phase and energy propagate in opposite directions. 

(c) The index of refraction is negative5, 6, n   e . 

(d) The refraction angle is negative according to Snell’s law, 1 1 2 2sin sinn n   (where 

2  is the refraction angle and 2 0n  ) (see Fig. 3). 

(e) If 2 0n  , then 1 0   (see Snell’s law above), which means that a directed beam can 

be created out of any source located at a LH material with 2 0n   (see Fig. 4).   

(f) In a LH material the Doppler effect is opposite, i.e. blue shift occurs if the source is 
moving away from the detector. 

(g) Opposite Cherenkov radiation: The energy flow is opposite to k ; the latter makes an 

angle  ( ο90 ) with the velocity of the particle,  , such that cos /c n  . 

(h) Opposite radiation pressure, P: 2 ouP k , /o k k k , so that P  is opposite to the 

energy flow. 



(i) Flat lense capability, as shown in Fig. 5. 
 

                                                           
Fig. 4. A point source within a material of 2 0n   produces an almost plane wave in a material with 

1 1n   according to the Finite Difference Time Domain simulation presented here. 

 

 
Fig. 5. Propagation of EM wave emitted from a point source and passing through a flat LH slab of 

1n    (left panel) or through a flat RH slab of 1.52n   (glass – right panel). In the LH case there is a 
focus inside the material and a focus on the other side. 
 
(j) Perfect lenses. Consider an object emitting (or reflecting) EM waves which can be 

analyzed in Fourier components as 
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 where x yq q q i j , x y R i j ,  2 2 2/zk c q  , and   is the polarization index. 

If /q c , zk becomes imaginary and    exp expz zik z k z  ; thus as z increases the 

components with /oq q c   (i.e. the evanescent waves) decay and the information 

they curry tends to disappear. At the far field, where  exp 0zk z  , the spatial 

resolution cannot be better than 2 / 2 /oq c     . On the other hand, inside a LHM 

where zk  is of opposite sign than zS , it is reasonable to expect that instead of a decaying 

wave we have a growing wave,  exp zk z  for /oq q c  . Detailed calculations, 

presented in Ref. 7, confirm this expectation. Thus, the evanescent waves are growing as 
they pass through a LHM. In particular, for a LHM with 1n   e  of thickness 
d SA BF  , where SA BF  is the distance traveled by the EM wave in air between 
the source, S , and the focus, F , the evanescent wave will reach the focus without any 

n2≈ 0 n1 = 1

point source



attenuation. Of course, practical considerations will limit the performance of this 
hypothetical perfect lens8, 9: Unavoidable losses in the LHM will lead to absorption and, 
hence, to a partial loss of information. To keep 1n   e  over a wide frequency 
range (associated with a wave packet) may not be possible. Another objection that may 
be raised is the following: How a passive medium can amplify the EM wave? This 
apparent paradox can be understood by noticing that an evanescent wave in an infinite 
medium does not have a steady state propagation; nevertheless it can accumulate 
increased energy by increasing the time to approach its steady state condition. In other 
words, the increased energy accumulation is due to the time delay it takes for an EM 
wave to passs through a LH slab; thus energy is conserved. 

 

III.   Designing and fabricating LHMs 
 
Conceptually, a way to create a LHM is to properly merge structures exhibiting negative 
Ree  with structures exhibiting negative Re  at an overlapping frequency range10. This 
merging of negative  Ree  and negative Re   structures occurs at the level of elementary 
units, the so called “optical atoms”, which in turn are repeated periodically in space. If one 
wants to push the analogy with the ordinary condensed matter (which is made out of close-
packed atoms), the size, a , of each “optical atom” must be much smaller than the average 
wavelength,  , corresponding to the frequency range in which Ree  and Re  are negative. 
This inequality, a   , is desirable (but not “sine qua non”), since it allows us to treat the 
LHM as an effective uniform medium which exhibits the desired property of negative index 
of refraction over a finite frequency range. 

As it is clear from Eq. (1), metals provide an obvious choice for obtaining negative 
Ree ; moreover p can be “tuned” by using parallel “infinite” metallic wires periodically 

placed, instead of bulk metal11. Indeed, one can show, by equating the average electric 
energy to the average magnetic energy due to an AC current flowing in the wires, that 
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where 2a  is the area per wire, and os is the geometrical cross-section of each wire. 

Far from trivial is the design of the elementary subunit which will provide a resonant 
response to the magnetic field strong enough to drive Re to negative values. Pendry came 
up with the idea of a double split ring resonator12 (SRR), shown in Fig. 6. 
 

unit cell
Fig. 6. The metallic double split ring resonator (SRR) combined with a continuous metallic wire (on the back 
side of a dielectric) make up the unit cell of a LHM. 



It was shown later on13, 14 that a single SRR (instead of a double one) with one or 
more cuts provides also a strong enough resonant response. Indeed, if the magnetic field is 
perpendicular to the plane of the SRR, it induces an electromotive force 

 / /md dt L dI dt    which drives a current around the ring;  is the magnetic flux 

through the ring, mL is the self-inductance and I is the current. Because of the cut(s), charge 

is accumulated there, so that the cut(s) act as capacitors. Hence the SRR is an effective 

capacitor-inductor circuit, which has a resonant frequency 1/ mL C  , where C is the 

effective capacitance of the split ring. Notice that both mL and C are proportional to the 

linear dimensions of the SRR13, 15, or to the corresponding unit cell size, a, so that the 
resonance frequency   (and, hence, the average frequency over which   is negative) is 

proportional to 1/ a : 
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This relation does not hold for very small a , because eventually the kinetic energy of the 

current carrying electrons,   2 2 21 1
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2 2e e p oN m ΄ s I   e e , where ΄ is the effective length 

of the perimeter of the SRR and s is the cross-section of the SRR ring, ceases to be 

negligible; this is so because the effective inductance16, 15  2/e p oL ΄ s   e e  of the 

electronic kinetic energy is proportional to / 1/΄ s a  ; thus  
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where 2 /e mA L a L . This dependence on the size (linear in 1a  for 2a A  and saturation 

for 2a A ) is confirmed by both simulations15, 17 (see Fig. 7) and experiments18. 
 

                                   
Fig. 7.  Magnetic resonance frequency mf  vs. the inverse size a  of the unit cell for a single SRR with 1, 2, and 

4 cuts. (The corresponding designs are shown at the right-hand side of the figure, where the single-cut SRR is 
magnified as to make visible the characteristic SRR lengths).  Dotted extensions of the lines indicate that the 
resonance is not strong enough to drive  to negative values. The visible frequencies range is  from 400 THz 

(red) to 750 THz (violet). The saturation value is given approximately by the following formula: 

    1/2
1.8 / 4p nd w nd     oe , where n is the number of cuts, all of size d ,   is the length 

of each side of the SRR, and w  is the ring- width. 

 



 In Fig. 8 we show how the two gap/cut SRR can be transformed to produce other 
designs19  till the so called fishnet design20, 21, 22 which seems to be the most successful one 
for achievement of left-handed behavior in both microwaves and optical regime. 

 

(a)   

 
 

 (b)                 

Fig. 8. (a): The two gap single-ring SRR can be transformed to that of two metal slabs (yellow color) 
separated by a dielectric (blue color) seen from the side and from the top. The two slab design can be 
reinforced with a pair of “infinite” wires on each side (lower right). Finally the width of the slabs can be 
increased as to join the parallel wires and thus to give rise to the fishnet design (two views of the unit cell are 
shown in the lower panel). (b): Three-dimensional view of the fishnet design: One unit cell (left) and multiple 
unit cells (right). 
 

When combining within the unit cell the two elementary subunits (e.g. wire plus 
SRR), we have to take into account that the magnetic subunit (e.g. the SRR) exhibits electric 
response as well, since it behaves as a finite wire in the direction parallel to the electric 
field23. The dielectric function of a metal wire of finite length is of the form 
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Thus the combined electric response of infinite metallic wires and SRRs (acting as finite 
wires as well) is as in the right panel of Fig. 9. 

 
Fig. 9. Figure shows how the dielectric function of a system of continuous wires (left-panel), combined with 
the dielectric function of a system of SRRs or short wires (middle panel), result to the more complicated 
electric response of the composite SRRs&wires system  (right panel).  

 

IV. Measuring LHMs 
 

There are two basic ways for confirming experimentally that LHMs have been actually 
realized. One is based on the negative refraction effect (see Fig.3), which can be facilitated 
by fabricating a wedge-like LHM; an EM wave of appropriate frequency enters the material 
from one side at normal incidence and exits from the other side of the wedge-like LHM at 
an oblique angle, which, depending on its sign relative to the normal, determines whether 
the material is LH or RH25, 26. Recently, the Berkley group used this technique to 
demonstrate LH behavior in a stack of fishnets27 at the near infrared, 1763  nm. 

The other way to confirm LH behavior is to measure the transmission through a flat 
slab of LHM and to identify frequency region(s) where a transmission peak appears 

H

E
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associated with  e and     being both negative. To make sure that the observed peak 

is indeed LH, one must show that by eliminating the magnetic resonance28 (e.g., by closing 
the gaps in SRRs) the peak disappears (since the closing of the gap changes   from 

negative values to 1   and hence n  e  changes from real to imaginary).  

Regarding the measuring/identification of the negative permeability regime in only-
SRR structures, a worth-mentioning approach, extremely convenient in micro- and nano-
scale structures, is by employing the so called excitation of the magnetic resonance by the 
electric field (EMREF)29: Consider a configuration where the electric field is parallel to the 
gap bearing side of a single gap SRR; because of the asymmetry, the electric field induces a 
loop-like oscillatory current in the SRR which exhibits a resonance behavior when   , 

manifested as a dip in the SRR transmission spectra. On the other hand, if the electric field 
is parallel to the sides bearing no gap, no current is induced and no magnetic resonance 
behavior is exhibited. Thus, by changing the polarization of the incoming linearly polarized 
EM wave (perpendicularly to the plane of the SRRs) one can easily identify the magnetic 
resonance regimes employing even a single layer of SRRs. This test was used by Enkrich et 
al.30 to show that SRRs of linear size of about 220 nm created a negative  frequency region 
centered at 1500nm  . 

In Fig.10 is shown a comparison of experimental and theoretical results regarding a 
LH transmission peak28 of very high intensity. The LH nature of the peak was demonstrated 
by comparing the SRRs&wires system with a system of closed-SRRs&wires, using the 
approach described above. 

 

 
Fig. 10. In panel (a) the transmission coefficient vs. frequency through a left-handed slab of SRRs and wires  
is shown (solid-thick line) in the microwave range (the structure unit cell is shown at the right-side of the 
figure). Dashed line is the transmission for the wires-only system; it exhibits a plasma frequency at 

8pf GHz . The thin line is for SRRs only, showing a dip associated with negative   at 3.8f GHz . 

When both wires and SRRs are combined (CMM) a LH peak at 3.8f GHz appears (thick line). Notice that 

the presence of SRR has lowered the plasma frequency to 5pf GHz , as demonstrated in Fig. 9. Panel (b) 

presents the corresponding to panel (a) theoretical results, showing impressive agreement with the 
experimental data (no adjustable parameter enters the simulation). Figure is from Ref. 28. Copyright: Optical 
Society of America. 
 

In Fig.11 we show experimental data and simulation results31 demonstrating the 
subwavelength resolution possibility (resolution of / 3  in the figures) offered by 
metamaterials. The specific metamaterial is not a LH one but a photonic crystal, which 
shares several features32 with the LHMs, while it is inherently almost lossless. 

 



                           
Fig. 11. Measured power distribution (solid points) and calculated average intensity (solid line) at 
0.7mn away from the second interface of a photonic crystal slab, for two incoherent sources at a distance 

/ 3 . Figure from Ref. 31. Copyright: American Physical Society. 

 

V. Goals and problems 
 

In the microwave regime the existence and satisfactory performance of LHM has been 
established (see, e.g., Fig. 10 where losses less than 1 dB per cm have been achieved). The 
goal next is to push this kind of performance to higher frequencies all the way to the optical 
range (i.e., for 400f THzt ). There are two physical mechanisms which seem to block our 

path to this set goal. One is the increased role of the effective “kinetic” inductance, eL  (due 

to the kinetic energy of the current carrying electrons in the metal), and the other is the 
increased contribution of the ohmic losses in the metal. Both of them become more 
important as the resonance frequency is raised and the size of the unit cell is shrinking. 

A rough analytical estimate of the frequency dependence of   can be obtained for a 
system of periodically placed SRRs as follows: Let  , w , t  be the side length, the width, 
and the depth of each SRR (see Fig. 7 – single-gap SRR). The effective area, S , of the SRR 

is  2
S w  and the volume of the primitive cell is 2

z za a a a a   , where the direction 

z is normal to the plane of the SRR. An external field B H along the z  direction 

induces a current /I i SB Z  and a magnetic moment m IS , where Z is the effective 
impedance  1/R i L C   .  

The magnetization M is by definition 2/ zm a a and the susceptibility /M H  . 

Performing these simple calculations we find 
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where F is a dimensionless number given by  
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In obtaining (21) we have taken into account both contributions to the total inductance 

m eL L L  , where mL  is the magnetic contribution and eL is the kinetic energy 

contribution. We have also taken into account that3 



   16
4 / 2 ln 1.5m

w
L w

b 

 

     
 


  , where 2b wt  . Setting typical values for 

0.8a , 0.1w a , 0.05t a , 0.04b a , 0.2za a , we find that 
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The ratio /R L appearing in (20) can be estimated as follows 
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Setting the silver values, 3.8eVp  , ( ) 6.6o e , / 0.04eV  , and geometrical 

dimensions as before, we find for /R L  the following result: 
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where 2 / 326nmp pc    and 95p   for Ag . Thus, according to this rough estimate 

we have for Ag that 
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The ratio /e mL L  is approximately  2 / 6 o
p wt e  which shows that e mL L  when 

  1/ 2
6 0.8o

p wt a  e , or when 400nma   for silver. In the limit of 400nma , the 

strength F of the resonance is 
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while the ratio /R L   seems to approach   / 1/p p    : 
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where the last relation is appropriate for silver. 
Eqs. (22) and (26) show the detrimental role of eL which reduces the strength of the 

resonance from about one (when 1a m ) to 2 20.8 / pa   for 3 pa  , i.e., for   reaching 

its saturation value as given by the formula in the caption of Fig. 7. Of course the existence 
of a non-zero R  reduces the maximum value Re  to less than one as a is decreased below 

a critical value; hence, the possibility of achieving negative values of   at visible 
frequencies seems problematic, as shown in Fig. 12. 
 



                        
Fig. 12. Simulations showing the real part of the relative permeability for a single-ring single-gap SRR as the 
size of unit cell of the SRRs is reduced. Notice the drastic reduction of the strength of the resonance for unit 
cell sizes between 1 m  and 167nm . The metal is aluminum which is less favorable than silver. Figure from 

Ref. 17. Copyright: Wiley-VCH Verlag GmbH & Co. KGaA. 
 

Of course there is always room for improvement by optimizing the details of the 
geometrical parameters and by choosing the most successful of the various designs. A recent 
paper by J. Zhou et al. (see Ref. 33) shows that by increasing the effective inductance to 
capacitance ratio, /L C , reduces the losses and increases the figure of merit. Furthermore, 
there are substantial differences among the various designs as far as the optimum 
performance is concerned34, 35 .This can be seen already from Fig. 7; it is shown also in Figs 
13 and 14. 
 

                                
Fig. 13. Calculated magnetic resonance frequency as a function of the inverse unit cell size (along 
propagation direction), ak, for systems of narrow and wide slab pairs. (Figure reports preliminary results 
concerning aluminum metallic slabs, with length l=2.19ak, width w=0.47ak, for the narrow slabs and 2.19ak  
for the wide,  thickness of the metal tm=0.25ak and thickness of the substrate t=0.5ak . The unit cell dimensions 
are 2.97ak×2.19ak×ak .) Notice that only the widening of the slabs is able to push the magnetic resonance 
frequency much deeper in the visible range. Indeed, the system of wide slabs has been already used for the 
demonstration of resonant magnetic response throughout the entire visible range36. 
 
 



                                                  
Fig. 14. Calculated optimum figure of merit (FOM=-Re(n)/Im(n)) vs. resonance frequency for the fishnet 
design and the design of narrow slabs and continuous wires. The fishnet design at the red end of the visible 
spectrum achieves a FOM of about 5.5. 
 

Fig. 15, taken from Ref. 37, summarizes the progress towards achievement of optical 
negative permeability materials and left-handed materials up to 2007. 
 

                       
Fig. 15. Advances in scaling and redesigning metamaterials with artificial negative magnetic response and/or 
negative refractive index, n. The solid symbols denote structures with 0n  , while the open symbols 

structures with 0  . The red color indicates structures based on the double split-ring resonator (SRR), the 

green color indicates single-ring SRRs, the blue pairs of metallic rods or slabs, and the magenta the “fishnet” 
structure. The four insets give pictures of fabricated structures in different frequency regions. Picture taken 
from Ref. 37. Copyright: AAAS. 
 
 

VI.  Summary 
 
In this paper we have presented the basic concepts and some of the main results in a fast 
developing and exciting field which extends electromagnetism to new realms. This new 
field, which is less than ten years old, offers the possibility of several novel applications 



which may revolutionarize optics. It is based on artificial structures, consisting of 
elementary units (the so called “optical atoms”), the main feature of which is that both their 
effective permittivity and their effective permeability are negative over a common frequency 
range. This implies that the propagation of the phase of EM waves to be in the opposite 
direction than that of the energy of EM waves. 

The existence and satisfactory performance of such metamaterials has been 
established in the GHz and low THz ranges and has been gradually extended to the red end 
of the visible spectrum, opening a novel era in optics. Two hurdles prevent for the time 
being the full exploitation of these so called optical left handed metamaterials (OLHMs). 
The first one is the increased amount of losses as we approach and enter the visible 
frequencies: The figure of merit (FOM), defined as the maximum value of Re / Imn n , does 

not exceed five or so ( n  is the index of refraction at the edge of the visible frequencies, 
400THzf  ). The second is of practical nature and it has to do with the present day limited 

capabilities for fabricating complicated patterns at the nanoscale (unit cell size less than 100 
nm). Actually, no true three-dimensional LHM has been fabricated yet at the nanoscale, 
although new fabrication methods38 (such as direct laser writing39 and nanoimprint 
lithography look promising). New improved designs adapted to existing fabrication 
capabilities may offer another path in overcoming this second hurdle. 

Returning to the first, more basic hurdle, several approaches are tried, some of more 
obvious nature (such as design optimization, or development and employment of gain media 
exceeding present day performance) and other of more radical approach (such as a bottom 
up approach based on synthetic chemistry, proposed by some of the authors of this paper). A 
third possibility is to avoid this problem by focusing on thin film applications where losses 
are not of critical nature.  

However, no researcher in the field expects that the intense research effort in the 
field, focused on these two hurdles, will diminish, if for no other reason, but for the 
numerous and exciting applications waiting to be realized. Among them we mention: 
Optical switching and bistability, zero reflectance, modulators (employing chiral OLHMs), 
strong diamagnetic response (magnetic levitation), zero index of refraction structures as 
beam collimators and, of course, superelenses and hyperlenses40, 41, based on the 
exploitation of the evanescent waves. Superlenses are capable of beating the diffraction limit 
at near field, by amplifying the evanescent waves, while hyperlenses aim at converting 
evanescent waves to propagating waves (through mainly the use of anisotropic materials 
with hyperbolic dispersion). 
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