# Structural and electronic properties of the fullerene isomers of $\mathrm{Si}_{38}$ : A systematic theoretical study. 

Zacharias G. Fthenakis
Institute of Electronic Structure and Laser, P.O. Box 1527, Heraklion-Crete 71110, Greece and Dept of Physics, University of Crete, Heraklion-Crete, 71110, Greece

Remco W. A. Havenith
Theoretical Chemistry Group,* Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Madhu Menon
Dept. of Physics and Astronomy, Univ. of Kentucky, Lexington, KY40506-0055 and Center for Computational Sciences, Univ. of Kentucky, Lexington, KY40506-0055

Patrick W. Fowler
Dept. of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
(Dated: February 21, 2007)

## I. SUPPORTING INFORMATION

## A. Distributions for the 38:9 isomer (optimum)

For completness we present here the corresponding figures of the distributions shown in the paper, for the optimum energeticaly isomer (i.e. isomer 38:9). As one can see, there is nothing particular in local planarity, pentagon and hexagon angle distributions or hybridization which would pick out isomer 38:9 uniquely from the others.


FIG. 1: Distribution of the pentagon angles for the $38: 9$ isomer for the : (I) DFT/B3LYP (solid line), (II) GTBMD (dashed line) and (III) OTBMD (dot-dashed line) calculation.

[^0]

FIG. 2: Distribution of the hexagon angles for the $38: 9$ isomer for the : (I) DFT/B3LYP (solid line), (II) GTBMD (dashed line) and (III) OTBMD (dot-dashed line) calculation.


FIG. 3: Distribution of the angle sums associated with every atom, for the $38: 9$ isomer, obtained with (a) DFT/B3LYP (solid line), and (b) GTBMD (dashed line).


FIG. 4: Distribution versus $n$ of (a) the three hybridized bond orbitals for near-planar the atoms (solid line), (b) the dangling orbital for the same atoms (dotted line), (c) the bond orbitals for the atoms at sharp corners (dashed line), (d) the dangling orbitals for the same atoms (dot-dashed line), for the 38:9 isomer (OTBMD method).


[^0]:    * Affiliated to Organic Chemistry and Catalysis

