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Theoretical study of the effect of temperature
on the magnetism of transition metal clusters
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Abstract. – The temperature effects on the magnetic properties of transition metal clusters
are investigated by computer simulations which combine the classical potential approximation
with the generalization of our recently proposed tight-binding molecular-dynamics method that
includes explicit incorporation of spin-orbit interactions and spin fluctuations. The efficacy of
this new method is demonstrated by application to small and intermediate size Nin-clusters
(n ≤ 201) for which experimental data are available for comparison. The results obtained are
in good agreement with the recent experimental findings.

Zero-temperature (ZT) model approximations have been found to be adequate in verifying
the earlier experimentally measured magnetic moments (MMs) reported for small 3d-transition
metal (TM) clusters (see, for example, ref. [1] and references therein). A number of compu-
tational approaches ranging from ab initio [2] to semi-empirical tight-binding (TB) approx-
imations [3, 4] valid at ZT have been proposed since then. The central assumption of these
approaches is that the cluster is a single-domain particle in which the spin magnetic moments
(SMMs) of the cluster atoms are aligned along the same direction, i.e., they are collinear.
Furthermore, all these approaches almost always ignore the contribution of orbital magnetic
moment (OMM) to the MM of the cluster [2, 5]. As a result, the MM of each cluster atom-i
is assumed to derive entirely from the spin of the electrons and obtained from the formula
µi = ni+ − ni−, where ni+ (ni−) denotes the number of electrons with spin-up (spin-down)
in the i -th cluster atom.
New experimental results, however, have shown the existing ZT models to be inadequate

in describing many of the observed behaviors and have provided a challenge to the theories
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to explicitly incorporate finite temperature and spin-orbit effects accurately for a correct
description [6–8]. These new experimental results pertain to: The magnetic phase transitions,
the variation of the cluster-MMs with temperature, or the variation of the cluster-Curie (T cl

C ),
and Debye (Θcl

D) temperature with the cluster size and the way T
cl
C and Θcl

D converge to their
bulk phase counterparts (T bulk

C and Θbulk
D ) respectively.

The evolution of a ZT formalism to a finite-temperature (FT) approach involves the fol-
lowing basic steps: i) The replacement of the collinear aspect of the ZT-theories. ii) To allow
for a statistical thermodynamic averaging of low-energy lying cluster states with random spin
and structural configurations as these are dictated by the temperature. Thus, the problem
may be approached in two steps. In the first, the non-collinearity effects (see ref. [9]) are
included followed by the temperature ones.
In the present letter, we present such a description by generalizing our ZT symmetry and

spin unrestricted tight-binding molecular-dynamics (TBMD) formalism [10]. We first intro-
duce the main interactions responsible for spin redistributions followed by the incorporation
of temperature effects. We then demonstrate the applicability of the new formalism by inves-
tigating the variation with temperature of the magnetic properties of small Ni clusters and
compare with the new experimental results on these systems.

Incorporation of non-collinear effects. – We generalize our well-tested ZT TBMD ap-
proach at the Hubbard-U level of approximation [10] to include the non-collinear cluster
magnetism. In the original ZT TBMD model an exchange-splitting parameter s(i)0 was intro-
duced which is proportional to the intra-site Coulomb interaction U and specifies the energy
splitting between spin-up and spin-down electrons in the i -th atom in accordance with re-
sults obtained by ab initio methods. Thus, within this model, a site-diagonal spin-dependent
Hamiltonian term V

(i)
spin is introduced of the form

V
(i)
spin =

(
s
(i)
0 0
0 −s(i)0

)
. (1)

The model described by eq. (1), assumes collinear alignment of the MMs of the cluster
atoms; the former assumed collinear to the z-axis of a local xyz-system assigned to the i -th
cluster atom. In generalizing this model, it is assumed that the deviation of the direction of
the MM µi of the i -th cluster atom from the Z-axis of the global coordinate system XY Z is
specified by the polar angles (θi, φi) defined with respect to this XY Z system. As a result, the
potential V (i)

spin, originally defined with respect to the local coordinate system xyz of the i -th

atom, is transformed into its expression V
(i),global
spin in the global systemXY Z as follows [11,12]:

V
(i),global
spin = Ξ†(θi, φi)V

(i)
spinΞ(θi, φi), (2)

where Ξ(θi, φi) is the standard spin-12 -rotation matrix:

Ξ(θi, φi) =
(
eiφi/2 cos θi/2 e−iφi/2 sin θi/2
−eiφi/2 sin θi/2 e−iφi/2 cos θi/2

)
. (3)

It is assumed that the Z-axis of the global system can be arbitrarily chosen and the obvious
choice is to take Z in alignment with the easy axis of the system.
Within the above description we introduce the Spin-Orbit interaction, V (i)

SO, in the i -th
atom within the L ·S coupling scheme, i.e., V (i)

SO = −λ(i)L(i) ·S(i), where λ(i) is the spin-orbit
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coupling constant for the i -th atom, L(i) its orbital angular momentum along the Z-axis and
S(i) its total spin in the direction of µi [13].
In an alternative formulation within the Hubbard-U model approximation to the e-e cor-

relations the spin-mixing interaction may be derived from a Coulomb-type Hamiltonian term
of the form [3, 4]: Vsmix = −U∑

lσ ρlσ,lσ̄c
†
lσ̄clσ, where c

†
lσ (clσ) is the creation (annihilation)

operator for an electron with spin σ at site l and ρlσ̄,lσ denote the electron density matrix
elements i.e., ρlσ,lσ̄ = 〈c†lσ̄clσ〉. It can be easily verified that the Hamiltonian term Vsmix is
equivalent to that given by eq. (2), i.e., V

(i),global
spin .

Incorporation of temperature effects. – At T > 0, a cluster, when thermalized in a heat
bath, is described by the canonical probability distribution function of total energy, PT (E ),
which specifies the probability that the system will be found in the energy interval [E,E+∆E]
at the specified temperature T. The distribution function corresponding to this temperature,
within the canonical ensemble description, is (see refs. [14,15] and references therein):

PT (E) =
nT (E)
NT

=
[∆Γ(E)] e−E/kBT

ZT
, (4)

where nT (E) is the number of states in the energy interval [E,E+∆E], NT is the total number
of accessible states, kB is Boltzmann’s constant, ∆Γ(E) the number of all the different states
with energy in the interval [E,E + ∆E], ZT =

∑
i exp[−βEi] =

∑
Ei
∆Γ(Ei)exp[−βEi] the

partition function at temperature T and β = 1/(kBT ).
To obtain nT (E) we proceed with the further generalization of our TBMD scheme for the

T = 0 case [10]. This is achieved by incorporating the Nose-Hoover thermostat method [16–18]
which is a constant-temperature method in an extended-system scheme that includes an extra
degree of freedom which ensures that the system is in thermodynamic equilibrium with a heat
bath [19].
A molecular-dynamics (MD) simulation at a given temperature Tj , j = 1, 2, . . . ,M , (M ≈

100) provides numerical values for nTj
(Ei) at a discrete set of accessible equidistant energy

values Ei, i = 1, 2, . . . , N , (N = 10000). Having obtained these, we make use of the proposed
Multiple Histogram Method (MHM) [20], and obtain the values of ∆Γ(E) from which it is
easy to obtain a smooth curve for the partition functions ZTj

, j = 1, . . . ,M . From these we
can obtain any other thermodynamic quantity related to the partition function. It is recalled
that the microcanonical entropy can be obtained from the equation S(E) = kB ln[∆Γ(E)]
(within an additive constant).
It should be understood, however, that a limiting factor in our method is the efficiency of

the MD in sampling partition functions. We address this by taking special care to minimize
problems associated with its use. This was achieved as follows:

– Wherever available, we started our simulations with cluster geometries corresponding to
global minimum in the Sutton-Chen potential description, using the Cambridge cluster
data base [21]. In cases when this was not available, we attempted to reach global
optimization with our computer codes.

– We used a very large number of MD time steps (10000000 steps corresponding to 0.1 ns
simulation time) and made sure that no abrupt changes occurred to states of lower
energy while the thermodynamic equilibrium was reached seamlessly during the final
and largest part of the simulation time even at elevated temperatures.

– We double-checked our MHM results by averaging directly over the time steps.
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Computational details. – In order to make our computations feasible we first reach
the thermodynamic equilibrium at each temperature using a classical interatomic potential
which gives results as close as possible to our TB ones. While reaching the thermodynamic
equilibrium, we apply our TB formalism (as generalized in the present work) every 100 time
steps in order to calculate the MM of the cluster. In the MM calculation the cluster geometry is
assumed frozen (as obtained using the classical potential approach at that particular time step)
and the calculation of the MM of the cluster is repeated for a large number, N (i)

ran, of atomic
spin configurations taken randomly over the i -th structural configuration (N (i)

ran ≈ 120–300
in the present calculations for every i -time step as dictated by our convergence criteria; i.e.,
convergence as N ran is increased). In view of these results, the average magnetic moment,
µ̄

(i)
cl , per cluster atom during the i -th time step is defined as follows:

µ̄
(i)
cl =

1
Ncl

∣∣∣∣∣∣
Ncl∑
k

N(i)
ran∑
j

µj,i
k e

−(Ej
i
−E

(i)
0 )/kBT

∣∣∣∣∣∣ , (5)

where µj,i
k is the magnetic moment of the k -th cluster atom at the j -th magnetic configuration

of the i -th time step. In case we want to calculate the projection µ̄(i)
cl,ζ of µ̄

(i)
cl on a specific

ζ-direction (i.e., that of an external magnetic field) we can just replace µj,i
k by µj,ik cos γj,ik in

eq. (5), where γj,ik is the angle between the specified direction and the direction of the magnetic
moment µj,ik . In eq. (5), Ncl denotes the number of cluster-atoms and it has been assumed that
each j -spin configuration contributes to the magnetic state of the i -th geometric configuration
with probability PM (E

j
i ) = e

−(Ej
i
−E

(i)
0 )/kBT and that

∑N(i)
ran

j e−(Ej
i
−E

(i)
0 )/kBT = 1. The last

equation is satisfied by normalizing the probabilities, i.e., by deviding all probabilities by
their sum. The index j denotes quantities evaluated at the particular j -th random atomic
spin configuration of the i -th structural configuration of the cluster. E(i)

0 is taken to be the
energy of the ferromagnetically aligned atomic-spin configuration at the i -th time step; it is
incorporated for numerical reasons, i.e., in order to avoid underflows or overflows. In this way
we take the average over the low-lying spin configurations of the cluster of a particular (frozen)
geometric structure (i.e., as calculated at the specific time step). Finally, the thermodynamic
average of µ̄(i)

cl given by eq. (5) over the various cluster geometric structures (i.e., time steps)
is obtained by averaging over the time steps (over which we calculated the MM) or with the
help of the probability PT (E) as given by eq. (4).

Results. – We next apply the present formalism to the Nin clusters of small and interme-
diate sizes. For the latter size, there exist relevant experimental results necessary for compar-
ison. For Ni, the classical Sutton-Chen potential [22] is used as this was found to give results
closer in agreement with our TBMDmethod than any other among the existing classical poten-
tials for Ni [23,24]. The TBMD-parameters used in the present work were taken from ref. [13].
Results for two cluster sizes are presented, namely for Ni43 and Ni201. In fig. 1 we present the
Lindemann index and the specific heat per atom for both Ni43 and Ni201 as obtained using the
classical potential approximation. From this it can be seen that the transition from solid to
liquid starts at the transition temperature Ttran(Ni43) ≈ 370K and Ttran(Ni201) ≈ 780K for
Ni43 and Ni201, respectively. The solid-to-liquid transition appears to take place over a wide
range of temperatures for the Ni43 cluster indicating a series of structural phase transitions.
Snapshots of the Ni43 equilibrium geometries near Ttran(Ni43) are depicted in fig. 2. In these,
the beginning of a bond breaking process and a transformation of the initial ZT fcc structure to
a rather complicated one resembling a twinning geometry are apparent. For the Ni201 cluster,
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Fig. 1 – The Lindemann index and the specific heat for Ni43 and Ni201 clusters as obtained using the
Sutton-Chen potential [22].

on the other hand, only one structural phase transition appears and, therefore, the transition
range is much narrower. In fig. 3 we show the temperature dependence of the MM per atom,
µ(T ), of the Ni43 and Ni201 clusters as obtained using the TB-formalism presented in the
above along with the existing experimental results for comparison. In particular, in fig. 3 ex-
perimental findings of Gerion et al. [6] for Ni200–240 clusters and that of Apsel [25] are included.
It is interesting to note that a decrease in the component of the total MM of the cluster along
a particular direction is accompanied by a non-negligible decrease in the average value of the
MM of the cluster atoms as a result of the structural changes with temperature. This is shown
in fig. 3 where µ̄(i)

cl and µ̄
(i)
cl,z are plotted for Ni43. Following the procedure of Gerion et al. [6],

we also calculated the temperature dependence of the magnetic contribution to the specific
heat of the Ni43 and Ni201 clusters as obtained by taking the derivative d{µ(T )}2/dT of the
corresponding µ(T ) curves. These results are also shown in fig. 3 along with the results of
Gerion et al. Recalling that T cl

C can be located by the maximum of the magnetic contribution
to CV (shown in fig. 3), it is found that T cl

C (Ni43) = 310K and T
cl
C (Ni201) = 620K.

Our results for both Ni43 and Ni201 clusters indicate that T cl
C < Ttran, i.e., the Curie tem-

perature for the cluster is smaller than the temperature which specifies the structural phase
transition (the latter as derived from the classical potential approximation shown in fig. 1).

Fig. 2 – Snapshots of the equilibrium structures (i.e., in thermodynamic equilibrium) of the Ni43
cluster at (left) 400K, (middle) 500K and, (right) 600K.
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Fig. 3 – The calculated temperature dependence of the magnetic moment per atom (upper panel) and
the specific heat (lower panel) of the Ni43 and Ni201 clusters as obtained in the present work along
with reported experimental results.

This observation indicates that Nin begins to develop a strong paramagnetic character (i.e.,
increase in the degree of disorder with respect to the orientations of the atomic magnetic
moments) near but prior (and incoherently) to a structural phase transition. Compared to
the results of Gerion et al. [6], our calculated TC value for Ni201 is somewhat larger than
their experimentally found T cl,exp

C (Ni200–240) = 340K and their theoretically calculated value
(T cl

C (Ni200–240) = 420K) within the mean-field theory [6]. However, our results are much
closer to the estimated T cl

C (Ni) ≈ 570K by Apsel et al. [25], and appear to have reached the
bulk TC value for Ni (625K). Additionally, it is also worth noting that our results predict
correctly an increase in the Curie temperature of a magnetic cluster as its size increases. From
fig. 3 it is apparent that our results for Ni43 rather than those for Ni201 are in better agreement
with the experimental results of Gerion et al. [6], the latter referring to clusters consisting
of 200–240 atoms. This may be considered as accidental and not to be taken seriously as
an issue for quantitative comparison between theory and experiment. This is because the
existing experimental results are not only very limited but also in substantial disagreement
among themselves. In particular, the results for the magnetic moments reported by Apsel et
al. [25] differ by approximately 25% from those of Gerion et al. [6], while the difference in the
corresponding values for TC is much larger.
As seen in fig. 3, the data for Ni43 exibit a temperature range, namely between 300 and

370K, where 〈mz〉 is larger than 〈m〉. This is a consequence of the progressive establishment of
non-collinearity of the atomic magnetic moments as the cluster reaches its structural transition
temperature. As a result, and in accordance with the defining eq. (5) and the following
discussion, 〈m〉 can become smaller than 〈mz〉.
Finally, it is apparent from both the experimental results of Gerion et al. [6] and the

present theoretical ones that µ(T ) increases initially with T as was discussed in our previous
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report [19]. However, the subsequent observed parabolic drop of MM with temperature does
not go to zero at T cl

C . Instead, MM starts deviating from the parabolic behavior exhibiting a
rather long tail. This may be interpreted as an indication that states with completely random
orientation of the MMs of the cluster atoms are not energetically favorable for single-domain
particles as is the case of the very small clusters.
In summary, we have introduced a unified approach that combines spin-orbit interactions

with temperature effects for performing molecular-dynamics simulations of transition metal
clusters. Application of the method to Ni clusters of small and intermediate sizes has produced
results in good agreement with existing experimental results.
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