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  Variation of the Surface to Bulk Contribution to Cluster Properties

Abstract: Recent computer simulations have indicated that there is a linear relationship
between the melting and the Curie temperatures for Nin (n≤ ) clusters. In this chapter, it
is argued that this result is a consequence of the fact that the surface and the core (bulk) con-
tributions to the cluster properties vary with the cluster size in an analogous way.The universal
aspect of this result is also discussed.Among the many interesting consequences resulting from
this relationship is the intriguing possibility of the coexistence of melting and magnetization.
As demonstrated, these conclusions have as their origin the major contribution coming from
themelting/magnetization ratio arising from surface effects and appear to overshadowall other
contributions. As a result, this can be quantified with approximate methods which are suitable
for describing any major surface contribution to a cluster property.

Introduction

As the cluster size increases, the cluster properties evolve toward their bulk counterparts. The
understanding of this evolution is of fundamental importance not only from the perspective
of basic science but also from the technological viewpoint. At a very approximate level, one
can claim that the cluster properties can be described in terms of their surface and core (bulk)
contributions and due to the fact that the surface to bulk ratio gets smaller as the cluster size
increases. Consequently, it is natural to expect that the cluster properties will evolve to their
corresponding bulk-phase ones for large cluster sizes.

As one particular example, wemention themelting temperature of large clusters. According
to the proposed model, the following functional relationship for the variation of the melting
temperature, Tcl

mel t ,N , of a cluster as the number N of its atoms increases has been suggested:

Tcl
melt,N = T

bulk
melt − δmeltN

−/, (.)

where Tbul k
mel t is the melting temperature of the corresponding bulk phase and δmel t is a constant

that dependsonN (Garcia-Rodeja et al. ; Gunes et al. ; Lee et al. ;Nayak et al. ;
Qi et al. ; Rey et al. ; Sun and Gong ). Correction terms in N−/ and N− powers
to the above expression have also been suggested (Doye andCalvo ).The term proportional
to N−/ in > Eq. . reflects the surface to bulk contribution to the melting temperature.

> Equation . was found to describe reasonably well the experimental findings in the
large-size regime (N > ). However, for clusters of smaller size, (especially for clusters with
number of atomsN ≤  ), > Eq. . does not ensure a quantitative description of the variation
of Tcl

mel t ,N with the cluster size (see, e.g., Baletto and Ferrando ; Lee et al. ; Nayak et al.
; Qi et al. ). This is because for small clusters, () the surface-to-volume contribution
to Tcl

mel t ,N is very large and () is very sensitive to the variations of the surface structure and
the cluster geometry (symmetry), as both of these characteristics get altered as the cluster size
changes.

Another property that has attracted much interest recently is the one pertaining to the evo-
lution of the magnetic features of the magnetic clusters as the cluster size and temperature
increase. This is mainly because of the potential applications of the magnetic grains in fabri-
cating new materials for advanced magnetic storage devices and other applications (Bansman
et al. ).

Recently, the results of our computer simulations led us to the conclusion that the Curie,
Tcl
C ,N , and the melting, Tcl

mel t ,N , temperature of NiN clusters consisting of N atoms are linearly
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related over a large range of cluster sizes (N ≤ ), and this relationship is quantified by the
following equation (Andriotis et al. ) :

Tcl
melt,N = αT

cl
C ,N + β, (.)

where α and β are constants. Least square fitting of our results leads to α = . and
β = .○K. This relationship was suggested to be related to the ratio of the surface to bulk
contributions to the clustermelting as well as to the averagemagneticmoment per cluster atom,
μ̄ i ,N(T) i = , ...,N . It was then claimed that this relationship could be justified within themean
field theory applied separately to the surface and core regions of the cluster (Andriotis et al.
).

A cursory thought seems to suggest that any type of direct relationship between Tcl
mel t ,N

and Tcl
C ,N to be fortuitous since melting and magnetic order seem to reflect completely differ-

ent aspects of the crystal potential. Therefore, > Eq. . cannot be considered as one which
reestablishes a valid physical relationship between these two cluster properties.

Furthermore, the variation of both Tcl
mel t ,N and Tcl

C ,N with the cluster size constitute separate
distinct and complicated projects for both theory and experiment. This is because significant
contributions to both of these physical quantities have their origin in surface as well as cluster-
core (bulk) effects which, at first look, affect Tcl

mel t ,N and Tcl
C ,N differently. These contributions

include: the effects of the cohesive energy, the shape (symmetry), the size, the surface to bulk
ratio, the surface tension, the temperature of the cluster, etc.

In early reports, it was found that Tcl
mel t ,N is usually smaller than the corresponding bulk

value. Of interest is the result applied for large enough spherical clusters of radius R:

Tcl
mel t ,N/T

bul k
mel t =  − km/R (.)

where km is a material-dependent constant (see, e.g., Buffat and Borel  and references
therein). A similar expression describing the variation of the Curie temperature with the clus-
ter size was also found within the phenomenological Landau–Ginsburg–Devonshire theory
(Huang et al. ), i.e.,

Tcl
C ,N/T

bul k
C =  − kc/R (.)

Use of > Eqs. . and > . gives the following values for α and β in > Eq. .:

α =
kc
km

Tbul k
C

Tbul k
mel t

(.)

and
β = Tbul k

C − αTbul k
mel t = ( −

kc
km
)Tbul k

C . (.)

Diep and collaborators (Diep et al. ) usingMonte Carlo simulations studied the effect of
the magnetic interactions on the melting temperature of a cluster. Although their investigation
was limited to very small clustersMN , (N ∈ [,]) of transition metals M, however, the conclu-
sions they arrived at are very important. In particular, among others, they have found that the
incorporation of the magnetic interactions leaves the cluster structure unchanged. However,
magnetic interactions lead to sharper peaks in the specific heat (and, therefore, to more precise
determination ofmelting and Curie temperatures), a slight increase in themelting temperature,
and a slight cluster-volume contraction (magnetostriction). After examiningmore carefully the
results of Diep et al. () (included in their Fig. ), we find that the relation of Tcl

mel t ,N and
Tcl
C ,N is more or less linear with the exception of the data of the very small clusters, i.e., for
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N ∈ [,,].The linear relationship between Tcl
mel t ,N and Tcl

C ,N was also suggested recently on the
basis of semiempirical and approximate phenomenological model descriptions (see Yang and
Jiang  and references therein).

All these descriptions support our findings (i.e., > Eq. .), which are based on a firm
quantummechanical model procedure as outlined in the following. In this work, we investigate
the implications of such a relationship which seems to specify a universal aspect of the surface
contribution to the cluster properties.

TheModel

The investigation of clusters of medium and intermediate sizes consisting of transition metal
atoms poses a severe challenge in terms of computer capacities and computer time. For this
reason, approximate schemes have been employed with most pronounced being those based on
empirical classical potentials. However, these models have limited applicability when there is a
need to understandmore about the electronic structure of these systems and follow its changes
as the cluster size increases and approaches the bulk phase. It is thus necessary to use methods
with firm ab initio footing while at the same time not sacrificing computational efficiency. One
suchmethod is based on the Tight-Binding approximation which we have adopted in our work.

In this section, we discuss briefly the implementation of this approach in order to model
the temperature and magnetic features of transition metal clusters. We will firstly give a brief
overview of our TB computational scheme that we used for systems at zero temperature. In the
following sections, we will describe the generalization of our method enabling the inclusion of
magnetic and temperature effects.

Tight-Binding Molecular Dynamics Methodology

The details of our Generalized Tight-Binding Molecular Dynamics (GTBMD) scheme can be
found in Andriotis and Menon () and Menon et al. (). The GTBMD method makes
explicit use of the nonorthogonality of the orbitals resulting in a transferable scheme that works
well in the range all the way from a few atoms to the condensed solid.The scheme also includes
d-electron interactions enabling dynamic treatment of magnetic effects in transition metal
systems. Here, we give a brief overview.

The total energy U is written in its general form as a sum of several terms (Andriotis and
Menon ),

U = Uel +Urep +U, (.)

where Uel is the sum of the one-electron energies En for the occupied states:

Uel =
occ
∑

n
En . (.)

In the tight-binding scheme, En is obtained by solving the characteristic equation:

(H − EnS)Cn
= , (.)

whereH is the Hamiltonian of the system and S the overlap matrix.
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The Hellmann–Feynman theorem for obtaining the electronic part of the force is given
by Menon et al. (),

∂En

∂x
=

Cn†
(
∂H
∂x − E

n ∂S
∂x )C

n

Cn†SCn
. (.)

The total energy expression also derives contributions from ion–ion repulsion interactions.This
is approximated by a sum of pairwise repulsive terms and included in Urep . This sum also con-
tains the corrections arising from the double counting of electron–electron interactions in Uel
(Andriotis and Menon ). U is a constant that merely shifts the zero of energy. The contri-
bution to the total force from Urep is rather straightforward. One can then easily do molecular
dynamics simulations by numerically solving Newton’s equation,

m
dx
dt
= Fx = −

∂U
∂x

(.)

to obtain x as a function of time.
Our TBMD scheme for a binary system consisting of elements A and B is based on a min-

imal set of five adjustable parameters for each pair (A,A), (B,B), and (A,B). These parameters
are determined by fitting to experimental data for quantities such as the bond length, the vibra-
tional frequency, and the binding energy of the dimers A, B, AB; the cohesive energy of the
corresponding bulk states of the A, B, AB materials; and the energy level spacing of the lowest
magnetic states of the dimer and trimer binary clusters consisting of atoms of A and B type.
In the absence of experimental data, we fit to data of small clusters obtained using ab initio
methods as described in the following subsection. It is apparent that only five parameters are
required in the case of a single species system.The generalization to a system containing more
than two kind of atoms is also plausible within this approach.

The fixed set of TB parameters are obtained from the universal scheme proposed by
Harrison () suitably scaled with respect to the interatomic distance (Andriotis andMenon
).

Collinear Magnetic Effects

In order to calculate the Curie temperature of a magnetic cluster, it is necessary to include non-
collinear magnetic effects in ourmodel description.These are introduced by extending our zero
temperature (ZT) Tight-Binding Molecular Dynamics (TBMD) approach at the Hubbard-U
level of approximation (Andriotis andMenon ) whichwe used to studymagnetic clusters in
the collinear magnetic approximation. According to this collinear model, an exchange-splitting
parameter s(i) is introduced which is proportional to the intra-site Coulomb interaction U.
This specifies the energy splitting between spin-up and spin-down electrons in the ith-atom in
accordance with results obtained by ab initio methods.Thus, within this model, a site-diagonal
spin-dependent Hamiltonian term V(i)s pin is introduced which has the form:

V(i)s pin =
⎛

⎝

s(i) 
 −s(i)

⎞

⎠
(.)

In this model, it is assumed that all atomicmagneticmoments (MMs) (of the cluster atoms)
are collinear to the z-axis of a local xyz-system assigned to the ith cluster-atom.
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The generalization of this model to include non-collinear effects is achieved in three steps.
In the first step, we include the randomness in the directions of the atomicMMs. In the second,
we include the spin-orbit interaction, and in the third, we include the temperature effects. For
the sake of completeness, we briefly discuss this generalization in the following.

Step : Inclusion of Randomness in the Direction of the Atomic
Magnetic Moments

In the first step, it is assumed that the deviation of the direction of theMM, μi , of the ith cluster-
atom from theZ-axis of the global coordinate systemXYZ is specified by the polar angles (θi, ϕi)
defined with respect to this XYZ system. As a result, the potential V(i)s pin , originally defined in

the local coordinate system xyz of the ith atom, is transformed to its expression V(i),g l obals pin in
the global system XYZ as follows (Anderson and Hasegava ; Uhl et al. ):

V(i),g l obals pin = Ξ†(θi , ϕi)V(i)s pinΞ(θi , ϕi), (.)

where Ξ(θi , ϕi) is the standard spin-/-rotation matrix :

Ξ(θi , ϕi) = (
eiϕi/ cos θi/ e−iϕ i / sin θi/
−eiϕi/ sin θi/ e−iϕ i/ cos θi/

) (.)

It is assumed that the Z-axis of the global system can be arbitrarily chosen, and a usual choice
is to take Z in alignment with the easy axis of the system.

Step : Inclusion of Spin-Orbit Interaction

In the second step, we introduce the Spin-Orbit (SO) interaction, V(i)SO , in the ith-atom within
the L–S coupling scheme, i.e., V(i)SO = −λ

(i)L(i) ⋅ S(i) where, λ(i) is the spin-orbit coupling
constant for the ith-atom, L(i) its orbital angular momentum along the Z-axis, and S(i) its total
spin in the direction of μi .

Details of the implementation of the Spin-Orbit interaction within our TBMDmethod have
been reported elsewhere (Andriotis and Menon ).

In the presence of a magnetic field, B (assumed to be along the direction specified by the
polar angles (θ, ϕ) with respect to XYZ-system), the atomicMMs of the cluster-atoms tend to
become parallel to the direction of B. The average projection of the MMs of the cluster-atoms,
μcl , along the direction of B (which is the experimentally measured quantity) is,

μcl =


Ncl

�����������

Ncl

∑

i
μi cos γi

�����������

, (.)

where Ncl is the number of cluster-atoms and cos γi = cos θ cos θi + sin θ sin θi cos(ϕ −ϕi).
In a different formulation within the Hubbard-U model approximation to the e-e correla-

tions, the spin-mixing interaction may be derived from a Coulomb-type Hamiltonian term of
the form (Kato and Kokubo ; Ojeda et al. ): Vsmix = −U∑l σ ρl σ , l σ̄ c

†
l σ̄ cl σ , where c

†
l σ

(cl σ ) is the creation (annihilation) operator for an electronwith spin σ at site l and ρl σ̄ , l σ denote
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the electron density matrix elements, i.e., ρl σ , l σ̄ =< c†l σ̄ cl σ >. It can be easily verified that the
Hamiltonian term Vsmix is equivalent to that given by > Eq. ., i.e.,V(i),g l obals pin .

Evaluation of the TB representation of the SO-interaction

In order to proceed with the evaluation of the TB matrix elements of the SO-interaction, we
write the SO-term as

S ⋅ L = LxSx + LySy + LzSz (.)

and compute the matrix elementswith respect to the basis set.We are using a basis set of atomic
orbitals yi lmσ (r), where the index i specifies the atom on which the atomic orbital (AO) is
centered, l specifies the angular momentum, m is used to count the various d-orbitals (i.e.,
dx y , dxz , dyz , dx−y , dz ), and σ denotes the spin. In terms of a linear superposition of these
basis functions, the single electron wave functions take the form

Ψiσ(r) = ∑
l ,m

Cilmσ yi lmσ (r), (.)

where Cilmσ denote the coefficients which are to be determined from the diagonalization of the
Hamiltonian.

The spin operators of > Eq. . refer to the global system and care has to be exercised as
they act on the local spin states, the latter relatedwith the former according to > Eqs. . and
> .. For example,

<↑

′

i ∣Sx ∣ ↓
′

i>=


cos ϕi sin θi , (.)

where the prime indicates the local functions and ↑, ↓ indicate spin-up and spin-down states,
respectively.

The matrix elements of the orbital angular momentum operators are obtained by operating
on the angular part of the wave functions which, in our TBMD formalism are described by
the Cubic harmonics. As an example, we write down the expression of the average value of the
z-component of the orbital magnetic moment, Lz , in terms of its matrix elements :

< Lz >=∑
iσ
∫ drΨ⋆iσ(r)LzΨiσ(r) (.)

or

< Lz >=∑
σ

occ
∑

i
∑

l ,m
∑

l ′m′
C⋆i lmσ Cil ′m′ σ ∫ dry⋆i lmσ (r)Lz yi l ′m′ σ(r) (.)

Assuming orthogonality of AOs centered at different atoms, and orthonormal basis functions
centered at one particular atom, we finally obtain the following expression for the d-orbital
contribution to the orbital magnetic moment < Ld

z > :

< Ld
z >= ∑

σ

occ
∑

i
∑

l=
∑

mm′
Δi l
mm′C

⋆

i lmσ Cilm′ σ (.)

where Δi l
mm′ are constants easily calculated by applying the relation:

LzYlm = mYlm (.)



  Variation of the Surface to Bulk Contribution to Cluster Properties

where Ylm are the spherical harmonics. For example, a straightforward calculation of the
constants Δi l

mm′ shows that the only nonzero matrix elements of Lz are the following:

< dx−y ∣Lz ∣dx y >= −i (.)

and

< yz∣Lz ∣zx >= −i (.)

Combining the above, we construct the spin-dependent TB-representation of the SO-
interaction term and add this to the other Hamiltonian terms.

Step : Inclusion of Temperature Effects

In the third step, our ZT-TBMD method has been extended by incorporating the Nose-bath
(Nose ) and the Multiple Histogram approximations (Fanourgakis et al. ), so as to be
applicable to cluster studies at finite temperatures in an efficient way (Andriotis et al. ,
; Fthenakis et al. ). This generalization allows one to calculate the caloric curve for
the cluster and use this to study the effect of temperature on the structural, electronic, and
magnetic properties of transition metal clusters and binary systems containing transition metal
and semiconductor atoms. The method has been used to study the variation of structural and
magnetic properties with temperature as well as to obtain the caloric curves of the Ni-clusters
(Andriotis et al. , ; Fthenakis et al. ).

Upon thermalization at temperatureT , a cluster can be described by the canonical probabil-
ity distribution function of total energy, PT(E), which specifies the probability that the system
will be found in the energy interval [E, E+ΔE] at the specified temperature T .The distribution
function corresponding to this temperature, within the canonical ensemble description, is (see
Fanourgakis et al. ; Schmidt et al.  and references therein):

PT(E) =
nT(E)
NT

=
[ΔΓ(E)] e−E/kBT

ZT
, (.)

where nT(E) is the number of states in the energy interval [E, E + ΔE], NT is the total number
of accessible states, kB is Boltzmann’s constant, ΔΓ(E) the number of all the different states with
energy in the interval [E, E+ΔE] (i.e., given by ZT = ∑Ei

exp(−βEi) = ∑i ΔΓ(Ei) exp(−βEi))
and ZT the partition function at temperature T .

Amolecular dynamics (MD) simulation at a given temperature T provides numerical values
for nT(E) at every accessible energy E. Having obtained these, we make use of the proposed
Multiple Histogram Method (MHM) (Weerasinghe and Amar ), and obtain the partition
functions ZTj for a finite set of temperatures Tj, j = , ...,M (M ≈ ) and the entropy terms
S(Ei) = kB ln [ΔΓ(Ei)] (within an additive constant) for a much larger set of energy values Ei ,
i = , ...,N (N ≈ ,) (Weerasinghe and Amar ).

Having obtained the quantities nT (E), ZT(E) and ST (E), we can then describe all the ther-
modynamic properties of the clusters and, in particular, the variation with temperature of their
structural, electronic, and magnetic properties.
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Computational Approach

The computation of the magnetic features of the clusters is performed within the above
described non-collinear TBMD scheme as this allows for a full quantumMD relaxation of sys-
tems containing several hundred transition metal atoms while incorporating magnetic effects
dynamically. More specifically, it includes: () e-e correlation effects at the Hubbard-U approxi-
mation (Andriotis andMenon ), () the spin-orbit interaction (in the L ⋅S approximation),
and () non-collinear magnetic effects (Andriotis and Menon , ). Furthermore, the
effect of temperature (Andriotis et al. ; Fthenakis et al. ) is included in the formal-
ism while making use of the full s, p, d basis set and contains many unique features that make
it ideally suited for the treatment of transition metal (TM) and semiconducting materials. For
large-scale simulations we have developed a parallel algorithm that enablesmolecular dynamics
simulations of systems containing atoms in excess of a thousand.This method is more accurate
than the order-N methods that are being used at present to treat systems of these sizes. The
successful application of our collinear TB scheme (see, e.g., Andriotis et al. , , ;
Lathiotakis et al. ) guarantees similar success for the present generalization as well. Finally,
we alsomention that this approach has been suitably adapted in order for exclusive use in study-
ing the transport properties (based on our computational codes as described in Andriotis and
Menon ; Andriotis et al. ).

While the TBMD computational approach generalized in such a way is suitable for calcu-
lating the magnetic properties of the clusters (of a specific geometry), its use for relaxing the
structure of particularly large clusters at nonzero temperatures has been found inefficient due
to the extreme computational complexity. This is because the thermodynamic equilibration of
a crystal requires sufficiently long MD relaxation time (of the order of – nanoseconds which
is translated into – million MD steps with each step being of the order of a femtosecond).

In order to make our computations feasible, we firstly reach the thermodynamic equilib-
rium at each temperature using the classical Sutton–Chen interatomic potential (Sutton and
Chen ) appropriately fitted to the TBMD results (Fthenakis et al.). It should be noted that
for Ni, the classical Sutton–Chen potential (Sutton and Chen ) was found to give results
closer in agreement with our TBMD method than any other classical potentials in use for Ni
(Erkos ; Fthenakis et al.). While reaching the thermodynamic equilibrium, we apply our
generalized TB formalism every  time-steps in order to calculate the MM of the cluster. In
theMMcalculation, the structure of the cluster is assumed frozen (as obtainedwithin the classi-
cal potential approach at that particular time step), and the calculation of theMM of the cluster
is repeated for a large number, N(i)ran , of atomic spin configurations taken randomly over the
ith-structural configuration (N(i)ran ≈ – for every i-time step in the present calculations).

In view of these results, > Eq. . is generalized as follows:

μcl =


KNcl

�������������

Ncl

∑

i

N(i)ran

∑

j
μ j
i cos γ

j
i e
−(E j

i−E)/kBT
�������������

, (.)

under the assumption that each spin configuration contributes to the magnetic state of the ith
geometric configuration with probability PM(E

j
i ) =


K e
−(E j

i−E)/kBT where,

K =
N(i)ran

∑

j
e−(E

j
i−E)/kBT . (.)



  Variation of the Surface to Bulk Contribution to Cluster Properties

The index j in > Eqs. .–. denotes quantities evaluated at the particular jth random
atomic spin configuration of the ith structural configuration of the cluster. E is taken to be
the energy of the ferromagnetically aligned atomic-spin configuration. In this way, we take the
average over the low-lying spin configurations of the cluster of a particular (frozen) geometric
structure (i.e., as calculated at the specific time step). Finally, the thermodynamic average of μcl
given by > Eq. . over the various cluster geometric structures (i.e., time-steps) is obtained
with the help of the probability PT(E) as given by > Eq. ..

Having obtained the temperature dependence of the averagemagnetic moment μcl (T) per
cluster atom,we proceedwith the calculation of the temperature dependence of the specific heat
of each cluster by taking the derivative d{μcl (T)}/dT of the corresponding μcl (T) curves.
FollowingGerion et al. (), we obtain theCurie temperature Tcl

C ,N for each cluster by locating
the maximum of the magnetic contribution to CV . This is repeated for a number of clusters of
various sizes.

Results and Discussion

In the present work, our focus is on the properties of themagnetic transition metal clusters and,
in particular, on Ni clusters for which experimental data are available for comparison. Using
the procedures discussed above, we have calculated the melting, Tcl

mel t ,N , and the Curie, Tcl
C ,N ,

temperatures of the NiN clusters for N ≤ .These results were discussed recently in Andriotis
et al. (). The melting temperature Tcl

mel t ,N has been derived on the basis of the Lindemann
index using the caloric curve as obtained from the classical potentialMD simulations.TheCurie
temperature Tcl

C ,N has been derived according to the quantummechanical procedure discussed
above. Both were found to increase with the cluster size tending to their corresponding bulk
values as the size of the clusters increases, in good agreement with the existing experimental
data (Andriotis et al. ).

The correlation between Tcl
mel t ,N and Tcl

C ,N obtained from our results is shown in > Fig. -
by the black solid line. This demonstrates and supports the validity of > Eq. .. We discuss
the universal aspect of this correlation and the conclusions that can be derived from in the
following.

Firstly, it should be noted that the conclusions one can arrive at from the obtained rela-
tionship between melting and Curie temperatures of magnetic clusters depend crucially on the
accuracy with which cluster melting temperatures are determined. This is a major issue as it
has been extensively discussed in the literature (see, e.g., Baletto and Ferrando (); Qi et al.
(); Sun and Gong () and references therein). This is because surface melting of small
particles occurs in a continuous manner over a broad temperature range in contradistinction to
themelting of the solid-core (bulk-like) which occurs at a specific critical temperature (Garrigos
et al. ). For this reason, it has been proposed that in order for Tcl

mel t ,N to be described quan-
titatively, the surface effects are usually treated separately from the core effects by introducing
the surface thickness, t , as a free parameter and calculate Tcl

mel t ,N by expressing firstly the heat
of the cluster fusion in terms of t and the cluster radius (see, e.g., Lai et al. ). A more com-
monly used approach for determining Tcl

mel t ,N is by employing the Lindemann’s criterion, an
approach followed in the present work (Fthenakis et al. ). Such a calculation is subject to the
limitations and the accuracy of this method. In particular, the so derived melting temperatures
depend strongly on the choice of the classical potential used (Andriotis et al. (); Fthenakis
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⊡ Fig. -
Plot of Tcl

melt,N
as a function of Tcl

C,N for the NiN clusters studied in the present work, N =, , ,
,  (solid line). The dotted black line denoted > Eq. . while and dashed black line describes
> Eq. . setting α =  and β = . Points above (below) the dashed line have Tmelt > TC (Tmelt < TC)
respectively

et al. ()). This explains why the reported values for the melting temperature of Ni clusters
cover a wide range. Nevertheless, the Sutton–Chen classical potential, employed in the present
work forNi, leads to accurate values for surface energies, vacancy energy, stacking fault energies,
and bulk melting temperature in very good agreement with experiment (Qi et al. ).

The accuracy of Lindemann’s criterion depends also on the steepness of its variation with
temperature at phase transition and on the specification of its percentage increase which should
be adequate to discriminate surface (partial) from all-cluster melting. In the present case, we
assign Tcl

mel t ,N to the temperature at which Lindemann’s index starts increasing. This allows us
to obtain the onset of cluster melting and to derive the melting temperature corresponding to
a cluster phase in which unmolten parts with a possible magnetic order are still present.

Similarly, the determination of Tcl
C ,N depends crucially on the accurate location of the max-

imum of the heat capacity variation with temperature.This was demonstrated in our previous
report (Andriotis et al. ) when discussing the Tcl

mel t ,N and Tcl
C ,N results of Ni and their

deviation from the prediction of > Eq. .. Additionally, the surface energy contribution to
the free energy of the cluster may be another reason that small cluster temperatures cannot be
extrapolated to bulk phase values (Qi et al. ).

Following these clarifications, we next discuss some obvious and hidden consequences of
> Eq. .. One of the first conclusion that can be deduced from these results is that the Curie
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temperature,Tcl
C ,N , of a magnetic cluster has to follow a size-dependence relationship analogous

to that of Tcl
mel t ,N .That is, if Tcl

mel t ,N is given by > Eq. ., then Tcl
C ,N has to follow the following

equation:
Tcl
C ,N = T

bul k
C − δCN−/, (.)

where δC is a constant that may have an N-dependence as δmel t . In fact, assuming the validity
of > Eqs. . and > . and taking the ratio between > Eq. . and > Eq. . by parts,
we obtain:

Tcl
C ,N − T

bul k
C

Tcl
mel t ,N − T

bul k
mel t

=
δC

δmel t
= δ, (.)

where δ is a constant which is expected to depend on N. It is apparent that > Eq. . has
exactly the form of our > Eq. ., suggesting that the N-dependence of the constant δ is very
weak.

It is worth noting that the numerical justification of > Eq. . by our results as expressed
by > Eq. . cannot ensure that the trends described by > Eqs. . and > . andwhich are
possibly valid for large clusters can be extrapolated to small clusters as well.The conclusion that
comes from > Eq. . is that whatever the functional relationship between the melting tem-
perature of a cluster and its size (not necessarily limited to that of > Eq. .) is, the functional
relationship followed by Tcl

mel t ,N should dictate the relationship between the Curie temperature
with its size as well. This hypothesis is supported by the results of Diep and collaborators (Diep
et al. ) who found that the incorporation of the magnetic interactions leaves the cluster
structure unchanged, thereby justifying our computational procedure.

One may argue that the use of two noncomparable methods, i.e., that of a classical potential
MD simulation for calculating the melting temperature and a quantum mechanical approxi-
mation for calculating the magnetic moments and the Curie temperature of a cluster, cannot
lead to results that can be correlated. We addressed this issue by fitting the classical Sutton–
Chen potential to the data for small clusters in such a way that resulted in TBMD and fitted
Sutton–Chen potential simulations giving the same structural properties for small Ni clusters.
Obtaining similar structural results by both methods appears to confirm the validity of the
classical potential MD simulations for our present purpose.

Furthermore, in order to resolve any reservations and ambiguities about the consistency of
our conclusions derived from the use of mutually inconsistent methods in calculating the melt-
ing and Curie temperatures, it is demonstrated in the following that a calculation of the melting
temperatures within our TBMD approximation is in excellent agreementwith the results of the
classical potential approximation used in the derivation of > Eq. ..

Following exactly the same procedure as the one we used to calculate the average magnetic
moment per cluster atom (and from this the Curie temperature) (Andriotis et al. ), we
calculate the average total energy, < ET >, of each cluster at its thermodynamic equilibrium at
a series of temperatures T. An average over Nran random spin configurations over the cluster
atoms is taken at each kth time step for Ncl time steps (Nran is taken approximately between
 and ). Finally, these spin-averaged values are averaged over time. That is,

< ET >=


Ncl

Ncl

∑

k=


Nran

∑
Nran
i= Ek

i e
−(Ek

i −E)/kBT

∑
Nrun
i= e−(Ek

i −E)/kBT
. (.)

where E is a reference energy (Andriotis et al. ). For completeness, it is recalled that

Ek
i =∑

jσ
εi ,kjσ + E

i ,k
re p (.)



Variation of the Surface to Bulk Contribution to Cluster Properties  

where εi ,kjσ denote the eigenvalues of the TB cluster Hamiltonian and Ei ,k
re p , the sum of the repul-

sive interactions (Andriotis andMenon ) of the cluster at the ith random spin configuration
and the kth time step. As in the case of the calculation of the Curie temperatures, the averaging
process over time in > Eq. . is performed while reaching the thermodynamic equilibrium
every  time-steps.

In > Figs. - and > -, we present our TB results for the variation with tempera-
ture of < ET > for the Ni and Ni clusters. For Ni, it is observed that the onset of a phase
change appears at≈ ○Kwhile themelting starts at≈ ○K. ForNi, themelting takes place
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⊡ Fig. -
Numerical resultsobtainedwithin theTBMDmethod for thevariationwith temperatureof theaver-
age total energy of the Ni cluster. Straight lines are least square fits to portions of the numerical
data
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at≈ ○K (taken to be themidpoint of the “parallel” shift of the two linear parts of the thermo-
dynamic curve.The so obtained melting temperatures appear to be in excellent agreement with
the results found using the classical potential method and the Lindemann criterion according
to which Tcl

mel t ,N= = 
○K and Tcl

mel t ,N= = 
○K.

Further headway can be made if > Eq. . is taken to be the zeroth-order approximation
of a piece-wise function of N in analogy to similar findings (Gunes et al. ; Qi et al. ) for
the expression for Tcl

mel t ,N given by > Eq. .. In this view, the results of Diep et al. () (see
Fig.  of their work) in the extreme case of very small clusters (N ∈ [,]) can lend support to
our results and conclusions.

The appearance of the nonzero constant term at the right-hand side of > Eq. . indicates
that there is a possibility for Tcl

C ,N to be greater than Tcl
mel t ,N . In particular, > Eq. . predicts

that Tcl
C ,N could be greater than Tcl

mel t ,N if

Tbul k
C > Tcl

C ,N >
β

 − α
. (.)

However, according to our results, the above inequality does not hold for the Ni clusters
since β/( − α) ≈ ○K, a value much greater than Tbul k

C = ○K. This is demonstrated in
> Fig. - with the indicated crossing of the dotted and dashed black lines with the former
describing > Eq. . and the latter describing the same equation taking α =  and β =  (i.e.,
corresponding to the Tcl

C ,N = Tcl
mel t ,N case). This incompatibility can be taken as an indication

that the functional forms dictated by > Eqs. . and > . are not valid for the entire range
of the cluster sizes.

The nonzero value of the constant βhas another consequence; it predicts that the ratio Tcl
me l t ,N

Tc l
C ,N

depends on the cluster size and, in fact, increases as the cluster size decreases. If the variation of
Tcl
mel t ,N is assumed as given by > Eq. ., the predictions of > Eq. . lead to the conclusion

that Tcl
C ,N decreases at a slower rate than Tcl

mel t ,N as the cluster size decreases and, therefore,
the “melting temperatures” of partially molten clusters can be found to be lower than the Curie
temperatures as > Eq. . implies. However, such a conclusion has to be taken with care as
the validity of > Eq. . over the entire range of cluster sizes is not valid.

Conclusion

We have presented results for the variation with the cluster size of the melting and Curie tem-
peratures of Nin , n≤ , clusters. Two complimentarymethodswere used, i.e., the classicalMD
employing the Sutton–Chen potential and the TBMD for obtaining the melting and the Curie
temperatures of the clusters. We have demonstrated that by fitting the classical potential to the
results of the TB description in the case of small clusters, we can achieve excellent agreement
between the results of the twomethods referring to the structural properties and the estimation
of the melting temperatures of the clusters.

Our results demonstrate without any ambiguity that the variation of the cluster properties
with the cluster size exhibits strong dependence on the ratio of the surface to bulk (core) con-
tributions, the latter appearing to have the same functional dependence on the cluster size for
both Tcl

C ,N and Tcl
mel t ,N .

In view of the established dependence of the melting temperature of a cluster on its surface
to volume contribution (as, for example, > Eq. .), our conclusion can be interpreted as an
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indication of a universal aspect of the surface to volume contribution to the cluster properties.
This justifies previous findings based on approximate and semiempirical approximations.
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