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Atomistic potential for graphene and other
sp2 carbon systems

Zacharias G. Fthenakis, ab George Kalosakas, cd Georgios D. Chatzidakis,e

Costas Galiotis, fg Konstantinos Papagelisgh and Nektarios N. Lathiotakis *i

We introduce a torsional force field for sp2 carbon to augment an in-plane atomistic potential of a

previous work [G. Kalosakas et al., J. Appl. Phys., 2013, 113, 134307] so that it is applicable to out-of-plane

deformations of graphene and related carbon materials. The introduced force field is fit to reproduce

density-functional-theory calculation data of appropriately chosen structures. The aim is to create a force

field that is as simple as possible so it can be efficient for large scale atomistic simulations of various

sp2 carbon structures without significant loss of accuracy. We show that the complete proposed potential

reproduces characteristic properties of fullerenes and carbon nanotubes. In addition, it reproduces very

accurately the out-of-plane acoustic and optical modes of graphene’s phonon dispersion as well as all

phonons with frequencies up to 1000 cm�1.

1 Introduction

Carbon nanostructures with predominant sp2 bonds, like carbon
fullerenes, nanotubes (CNTs) and graphene, are in the center of
scientific and technological interest for more than three
decades.1–3 This interest has increased significantly after the
synthesis and identification of single layer graphene which has
triggered an unprecedented focus of research on the material
itself, its potential applications and other two-dimensional
materials.4–9 The accurate, yet efficient, modeling of sp2 bonded
carbon at an atomistic level remains a great challenge for theory.
Although there exist several atomistic models10–19 and many of
them have been proven accurate in describing several properties
of carbon based nanomaterials at a microscopic level, there is a
continuous need for as simple as possible and at the same time
as accurate as possible models that could allow the simulation at
a large, and increasing, scale.20–32

In a previous work,33 a force field for graphene was pre-
sented with terms depending only on atomic displacements

within the graphene plane. In the present work, we extend that
potential with the inclusion of torsional terms. The improvement
achieved with these new terms is that it can be used to describe
accurately out-of-plane distortions. For validation, we apply the
present potential to several characteristic test cases like the relative
stability of fullerene isomers, the strain energy and the Young’s
modulus of CNTs and the phonon dispersion of graphene.

The potential energy in atomistic simulations can be approxi-
mately expressed as the sum of several terms corresponding to
specific geometric deformations originating from covalent, electro-
static or weak interactions. In the present, for sp2 carbon systems, we
consider only terms arising from covalent bonding. Electrostatic
terms are excluded since there is no charge localization on atoms,
while for a single layer of sp2 carbon atoms weak interactions can be
neglected. Therefore, we assume a deformation energy U of the form

U = Ustr + Ubend + Utors (1)

where Ustr is a bond-stretching term, Ubend an angle-bending
term and Utors a term depending on out-of-plane torsional angle
deformations. In a previous work,33 parametric forms for the
first two terms were presented, derived through fitting to ab initio
calculations. The individual (for a single bond or angle) bond-
stretching and angle-bending terms, i.e. the contributions to Ustr

and Ubend corresponding to a single bond or angle distortion, have
respectively the forms33

Vs(r) = D[e�a(r�r0) � 1]2, (2)

with parameters D = 5.7 eV, a = 1.96 Å�1, and r0 = 1.42 Å, and

VbðyÞ ¼
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with k = 7.0 eV rad�2 and k0 = 4 eV rad�3. Then the deformation
energy terms of eqn (1) are Ustr ¼

P
i

Vs rið Þ and Ubend ¼
P
j

Vb yj
� �

,

with i and j enumerating all the different bonds and angles,
respectively.

This potential was proven useful in several cases, for example
in reproducing accurately several elastic properties of graphene.33

However, it is only applicable to cases for which no out-of-plane
deformations occur. For out-of-plane distortions, the bond-
stretching and angle-bending terms alone are not sufficient to
yield accurate results and augmentation of the force-field with
torsional terms is required (see for instance the discussion for
C40 isomers in Section 3.1). This is the main task of this work.
Following the same recipe as in ref. 33 we assume a simple
form for the individual torsional term with parameters that are
fitted to reproduce deformation energies from ab initio calcula-
tions. Our aim is to keep the potential as simple as possible, so
it can be used in large scale molecular dynamics or Monte Carlo
atomistic simulations in graphene and other sp2 carbon materials,
being at the same time as accurate as possible.

In order to check the efficiency of the proposed potential, we
implemented it in LAMMPS computer code34,35 and tested its
speed compared with two popular atomistic models, namely
Tersoff-2010,12 and LCBOP.16 We simulated graphene with
periodic boundary conditions assuming a cell of 1152 atoms. We
found that our scheme is 3 and 4 times faster in this simulation
than Tersoff-2010 and LCBOP, respectively. Thus, the present
potential will be a very good choice for extended sp2 carbon
systems. In case local phenomena are under study, for instance
functionalization of such systems, then one expects that locally the
structures depart from sp2 hybridization. In that case, the potential
can be either modified locally to account more accurately for
such effects, or replaced locally by a more accurate, but likely
less effective scheme.

This paper is organized as follows: In Section 2, we describe
the additional torsional terms and the procedure of fitting,
i.e. optimizing the associated parameters. Full details for this
procedure are given in a separate report.36 Then, in Section 3,
we demonstrate the efficiency and the accuracy of this potential
in specific applications: energetics of fullerenes (Section 3.1), the
strain energy and the Young’s modulus of CNTs (Section 3.2), and
the phonon dispersion of graphene (Section 3.3). Conclusions are
included in Section 4.

2 Torsional force field

In order to fit the parameters of a torsional term, we calculated
ab initio the total energies of two structures of a single graphene
layer folded by an angle f around an axis lying along either an
armchair or a zig-zag direction. These structures are shown in
Fig. 1 and the corresponding unit cells are also included. The
structures are periodic along the direction of the folding axis
but finite along the vertical direction. In other words, they are
ribbons that fold around their middle line. Due to periodicity,
a minimal size for the unit cell was adopted in the folding
direction, and a large one in the vertical in order to avoid edge

effects as much as possible. For the armchair-axis folding
(Fig. 1 top), the adopted unit cell contains 22 atoms, while for
the zig-zag one (Fig. 1 bottom) 17 atoms. In that way, in the case
of armchair folding axis, for all atoms located on this axis, all
neighbors up to the 5th in the vertical zig-zag direction are
included in the simulation (see Fig. 1 top). In the case of the
zig-zag folding axis, with a thinner unit cell along the edge, all
neighbors up to the 8th in the vertical armchair direction are
included (Fig. 1 bottom). Finally, the unit cells also contain
sufficient empty space in both vertical directions outside the
ribbons. Calculations were performed at the level of generalized
gradient approximation, Perdew–Burke–Ernzernhof functional,37

of density functional theory (DFT) using the Quantum-Espresso
periodic code.38 We used the same pseudopotential39 as in ref. 33
and plane-wave cutoffs 40 and 400 Ry, for the wave-function and
density, respectively.

Obviously, the deformations shown in Fig. 1 are rather
complex. They involve several individual torsional terms of
different torsional angles and, in addition, angle-bending terms.
This complicates the fitting process which is described briefly
here. In order to fit an analytic form for the individual torsional
term, it is necessary to separate the total torsional energy, i.e. to
remove all the angle-bending contributions from the total defor-
mation energy. This was achieved by identifying and expressing
analytically, in terms of f, all the changes in bending angles
induced by the folding. Then the angle-bending expressions of
eqn (3) were used to account for the individual angle-bending
terms which were subsequently subtracted from the points of
the total deformation energy to obtain the remaining ‘‘pure’’
torsional energy. More details are presented elsewhere.36

In order to proceed with the fit, we express the total torsional
energy analytically in terms of f including all individual
torsional terms that contribute. Thus, we have identified all
torsional angles altered by the folding and express them in
terms of f. Finally we have to assume a fitting form for the

Fig. 1 The structures simulated for folding around an axis along the
armchair (top) and along the zig-zag direction (bottom). Unit cells are
shown in red frame.
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individual torsional terms, i.e. the contribution to Utors corres-
ponding to a single torsional angle o, and we chose the
following that respects rotational symmetry:40

VtðoÞ ¼
1

2
V1 1þ cosðoÞ½ � þ 1

2
V2 1� cosð2oÞ½ �; (4)

where V1, V2 are parameters to be optimized.
The fitting can be performed for several choices regarding

the range of f, [0,fmax], and we have investigated three different
ones.36 The optimal values we found are V1 B 2 � 10�4 eV and
V2 E 0.23 eV. Due to the small value of V1, we can neglect the
first term in eqn (4) simplifying further the potential expres-
sion. Thus, our final proposition for the individual torsional
term is

VtðoÞ ¼
1

2
V2 1� cosð2oÞ½ �; V2 ¼ 0:23 eV: (5)

The fitted function reproduces reasonably well the DFT data up
to folding angles of 301 (E0.5 rad).36

3 Potential validation

The important extension provided here regarding the in-plane
potential presented in ref. 33 is the incorporation of the out-of-
plane torsional term. This term is crucial as it permits calcula-
tions of out-of-plane deformations in planar graphenes and
also simulations of non-planar sp2 carbon structures, like for
instance fullerenes and CNTs. In this section, the full potential
that includes the in-plane terms given by eqn (2) and (3) and
the torsional term of eqn (5) is applied to several test cases
to check whether various experimental or accurate ab initio
theoretical results are reproduced. We focus on examples for
which the correct description of out-of-plane deformations is
important. Thus, we test our potential against (a) the energy of
fullerene isomers, (b) the energy and the Young’s modulus of
nanotubes with different chirality (n,m), and (c) the phonon
dispersion relations of graphene focusing on the out-of-plane
acoustic (ZA) and optical (ZO) modes.

3.1 Fullerenes

Apart from the well known icosahedral C60 fullerene,1 many other
fullerenes exist. They may have different number of atoms and their
pentagonal and hexagonal rings may be arranged differently.41 A CN

fullerene is composed of 12 pentagonal and N/2 � 10 hexagonal
rings, where N is an even number with N Z 20. Due to the different
arrangement of the pentagonal and hexagonal rings in a CN

fullerene, many CN fullerene isomers exist, the number of which
rise exponentially41 with N.

Albertazzi et al.42 showed that the energy U of CN fullerene
isomers rise almost linearly with the number Np of pentagon
adjacencies. In their study they calculated the energy of the
forty C40 isomers using 12 different methods, from molecular
mechanics to very accurate ab initio methods. The slopes of the
linear relations depend on the method used, and vary between
99.5 kJ mol�1 (for the ab initio methods) to 24.4 kJ mol�1

(for the molecular mechanics methods). In the present study we

repeat these calculations for the energy of the forty C40 isomers,
using our potential. In Fig. 2, we show the energy DU of these
isomers with respect to the energy Ugraph of graphene as a
function of Np, where Ugraph = 40 Ugraph

coh and Ugraph
coh is the cohesive

energy of graphene. As one can see, the energy of the isomers
rise linearly with the number Np of their pentagon adjacencies
in accordance with the results of ref. 42. Moreover, the energe-
tically optimum isomer (isomer number 40 : 38, according to
the isomer enumeration provided by ref. 41) is the same as the
one found by Albertazzi et al. using most of the 12 methods,
including the ab initio.42 Using a least squares fitting we calcu-
late the slope a and the intercept b of the relation DU = aNp + b.
The values we found are a = 0.42 eV (or a = 40.5 kJ mol�1), and
b = 21.4 eV with standard error of estimate 0.53 eV. The
obtained value for a, is within the range of slopes found by
Albertazzi et al.

Using our potential we found that the energy of the icosa-
hedral C60 fullerene with respect to the energy of graphene is
DU(C60) = 23.4 eV or DU(C60)/N = 0.39 eV per atom, which is
consistent with the corresponding experimentally obtained
energy value 0.41 � 0.02 eV per atom,43,44 and the theoretically
obtained value 0.38 eV per atom using the DFT method at the
GGA/PBE level.45 The corresponding energy found from the
optimum C40 isomer (isomer 40 : 38 of ref. 41, with Np = 10) is
0.64 eV per atom, in accordance with the value 14.6 kcal mol�1

(0.63 eV per atom), that can be obtained from ref. 45. In that work,
the energies of both the optimum C40 isomer and graphene are
given with respect to that of the icosahedral C60 obtained with the
DFT/PBE method.

Neglecting the torsional terms of the eqn (5), we obtain the
energy DU of the C40 fullerene isomers that is shown in the
inset of Fig. 2, as a function of Np. As one can see, the linear
relation between DU and Np is not reproduced and the energy
values DU range between 10 and 12 eV. This range is much
smaller than that obtained when torsional terms are included

Fig. 2 The energy of C40 fullerene isomers, calculated with the present
potential, with respect to the energy of graphene DU = U � Ugraph as a
function of their pentagon adjacencies Np. The inset shows the corres-
ponding results when the out-of-plane torsional term of the potential is
neglected.
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(between 25 and 30 eV). Moreover, the energetically more
favorable isomer found when torsional terms are neglected is
the 40 : 40 isomer, with Np = 12, and not the 40 : 38 obtained
when terms are included. As for the icosahedral C60, its energy
without including the torsional term, is DU(C60) = 9.9 eV or
DU(C60)/N = 0.17 eV per atom, which is much smaller than the
experimental value of 0.41 eV. This clearly shows the impor-
tance of the torsional terms of the proposed potential for the
accurate prediction of the energetics of the fullerene structures.

3.2 Carbon nanotubes

It has been shown that the strain energy per atom DU/N = U/N�
Ugraph

coh of a CNT, i.e. the energy per atom U/N with respect to the
cohesive energy of graphene Ugraph

coh , depends on its diameter D.
Tibbetts,46 using continuum elasticity theory, showed that the
strain energy per atom of a CNT is given by DU/N = Ed0

3S/(6D2),
where E is the Young’s modulus of the CNT, S the area per atom
and d0 the interlayer separation in graphite. Assuming that E and
S are constants, the strain energy DU/N has a D�2 dependence,
i.e. DU/N = C/D2, where C is a constant.

The fitting value of C varies, depending on the method used
for the energy calculations. Using the Tersoff10 potential, Sawada
and Hamada47 found C = 5.64 eV Å2, while Tersoff48 estimated
C = 5.36 eV Å2. Zhong-can et al.49 using continuum elasticity
found C = 6.12 eV Å2. Based on tight binding calculations,
Xin et al.50 found C = 5.76 eV Å2, Molina et al.51 estimated
C = 5.64 eV Å2, while Hernandez et al.52 found C = 8.7 eV Å2 for
the (n,0) CNTs, and C = 8.1 eV Å2 for the (n,n) CNTs. Using a
tight binding density functional method, Adams et al.53 calcu-
lated C = 8.46 and 8.37 eV Å2 for the (n,n) and the (n,0) CNTs
respectively. Sánchez-Portal et al.,54 performing DFT calcula-
tions in the LDA level,55,56 found C = 8.00 eV Å2 for the (n,n),
while for the (8,4) and (10,0) CNTs they found slightly larger
values, C = 8.60 and 8.64 eV Å2, respectively.

In Fig. 3, we show (with points) the energy DU/N as a function
of 1/D2 of various optimized (n,n) and (n,0) CNTs, for D 4 6 Å,

using the model potential presented here. As we can see, there
is an almost linear relation between DU/N and 1/D2, in agree-
ment with all the previous studies. Fitting a linear function of
1/D2 to these energy values, we find that both (n,0) and (n,n)
CNTs can be approximately described by DU/N = C/D2, where
C = 8.9 eV Å2. This fitting is shown by continuous line in Fig. 3.
The obtained value of C, using the force field presented here,
is close to the tight binding values of Hernandez et al.,52 the
tight binding density functional values of Adams et al.53 and the
DFT/LDA values of Sánchez-Portal et al.54 This value is consis-
tent to the results obtained with the more accurate methods, in
contrary to the corresponding results of other, less accurate
atomistic models.

Note a very small discrepancy between this analytical relation
and the numerical data for intermediate values of D in Fig. 3,
revealing that a 1/D2 dependence of the energy is not so precise.
A more accurate relation for the energy per atom DU/N should
include an additional term depending on 1/D4, as reported by
Kanamitsu and Saito.57 Including this term in our fitting, we
find DU/N = 9.68 (eV Å2)/D2 � 45.3 (eV Å4)/D4.

Furthermore, we calculate the Young’s modulus E of the
(n,0) and (n,n) CNTs using the potential proposed here, through
the relation

E ¼ 1

2

@2U

@x2
l

prd0
; (6)

where U represents the deformation energy of a CNT segment
with length l deformed by x (x � dl), r is the CNT radius and
d0 = 3.34 Å is the width of the nanotube wall, where we have
adopted the convention that the width d0 of the nanotube is the
same as the interlayer separation of graphite. In Fig. 4, we plot
the calculated E values against the CNT diameter D. As one can
see, our model predicts a rapid increase of the Young’s modulus
E of CNTs as a function of their diameter D, for diameters up to
8 Å. For larger diameters, as the strain due to rolling drops,
E remains almost constant with a value equal to that of graphene.
This result is in accordance with earlier studies using other

Fig. 3 The energy per atom DU/N with respect to the energy of graphene,
for the (n,n) and (n,0) CNTs (diamonds and circles, respectively) versus
1/D2, where D is the nanotube diameter. The solid line represents a fitting
with the formula DU/N = C/D2 (see text).

Fig. 4 Young’s modulus, E, for the (n,n) and (n,0) CNTs (squares and circles,
respectively) as a function of their diameter D. Points show numerical results
and solid lines fittings with analytical relations (see text).
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model potentials,58–60 as well as tight binding61 and ab initio
calculations.52 Moreover, we fit a quadratic function of 1/D2 to
these data. The fitting functions for (n,0) and (n,n) CNTs are
E = 950 + 175/D2 � 23 500/D4 and E = 950 � 175/D2 � 7080/D4,
respectively, where E is given in GPa and D in Å. These analytical
relations are also shown in Fig. 4 with lines and we see that these
functions perfectly fit to the calculated E values. It is worth
noting that the corresponding Young’s modulus value predicted
for graphene using our model potential is E E 950 GPa.

3.3 Phonon dispersion relations of graphene

As another test of the force field presented here, we calculate
the phonon dispersion relation of graphene along the GMKG
path and compare it with experimental values62,63 as well as DFT
calculations. The phonon dispersion relations were obtained
using a hand-made computer code which calculates the Hessian
matrix as the derivative of the atomic forces by inducing small
perturbations of the atomic positions.

DFT phonon calculations were performed at the LDA level
employing the Perdue and Zunger64 exchange and correlation
functional using the SIESTA code.55,56 We also used norm-
conserving Trullier and Martins pseudopotenitals,65 and
10 � 10 � 1 Monkhorst–Pack k-point grid. As for the basis set,
we used a double-z polarized basis set of atomic orbitals with a
100 Ry energy cut-off. For the phonon band structure calculations
we used the ‘‘vibra’’ utility of SIESTA.

The phonon dispersion calculated with our potential and
DFT are shown in Fig. 5 together with the experimental data.
For comparison with known, widely used atomistic potentials,
we show in Fig. 6, the dispersion obtained using our potential
together with that using the Tersoff,10,11 a reparameterized
Tersoff (Tersoff-2010),12 and LCBOP16 potentials, in panels (a)–(c),
respectively. In order to quantify the performance of different
schemes in phonon dispersion calculations, we show in Table 1
the RMSD error (root of the mean squared deviation with respect
to experimental values) for all calculation schemes shown in Fig. 5
and 6. The numerical data for the dispersions obtained by the
Tersoff, Tersoff-2010, and LCBOP potentials are taken from ref. 66.

As seen in Fig. 5, 6 and Table 1, in general, DFT reproduces
more accurately phonon dispersions than any of the considered
classical atomistic potentials, as expected, despite the fact that
the simple LDA approximation was used. However, LO branch
is an exception for which LCBOP and Tersoff-2010 seem to
perform better.

Clearly the present potential, despite its simplicity, is quite
accurate in reproducing the phonon dispersion for all modes in
the regime of small frequencies. Its performance in the linear
regime of the LA and TA acoustic modes is excellent and in very
close agreement with the experimental and the DFT results. This
is demonstrated in Table 1 where we show the RMSD errors only
for those phonons that their experimental frequency is smaller
than 1000 cm�1 (see last row). As we see, in this regime, only the
DFT results are superior to the present potential, while those of
the other atomistic potentials, including the two recent ones,

Fig. 5 Phonon dispersion relation of graphene along the GMKG path calcu-
lated using the potential presented here and the DFT method at the LDA level,
compared with experimental data (points) of the phonon dispersion of
graphite.62,63

Fig. 6 Phonon dispersion relation of graphene along the GMKG path calcu-
lated using the potential presented here compared with (a) the Tersoff, (b) the
Tersoff-2010, and (c) the LCBOP potentials. The experimental points of the
phonon dispersion of graphite62,63 are also included.
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are less accurate. The only exception from the good perfor-
mance in this regime is the upper part of the TA mode, where
the results of the present potential seem to deviate from the
experimental data.

Regarding the ZO and ZA modes (the lower optical and
acoustic modes, respectively), representing the out-of-plane
phonons in graphene, the performance of the present potential
is quite satisfactory, and substantially better than any of the
other atomistic potentials we discuss here. This is quantified in
Table 1, where we include the RMSD errors for these modes (see
ninth row). Thus, in conclusion, the out-of-plane terms intro-
duced in the present work, augmenting the in-plane terms
introduced in ref. 33, add to the potential the capability to
calculate very accurately the out-of-plane phonon modes ZA and
ZO of graphene.

Overall, the potential presented here is superior than the
Tersoff potential. This is the case for almost all modes as shown
in Table 1 except ZO, for which, although our potential is very
accurate, Tersoff potential performs surprisingly well. Compared
to the two more recent potentials, i.e. Tersoff-2010 and LCBOP,
the present potential shows a worse overall agreement with
experiment. However, the overall performance of the present
potential is negatively affected mainly by its inability to repro-
duce the LO and TO modes and, to a lesser extend, the high
frequency regimes of TA mode. These phonon frequencies are
substantially overestimated. Its failure, however, is less dramatic
than Tersoff’s potential. We mention that these modes are rather
unaffected by the out-of-plain torsional terms introduced in the
present work. Instead, they depend strongly on the in-plane
bond-stretching and angle-bending terms. A possible future
improvement would be to extend the present model by including
more distant stretching interactions (than just first neighbors) or
introducing mixed stretching-bending terms. Such terms can

also be fitted to ab initio data similarly to the terms already
included in the present potential.

It should be stressed that graphene possesses anomalous
optical-phonon dispersion at the G and K points since altera-
tions of the electronic screening occurs for the atomic vibration
at these particular points5,67 There exist Kohn anomalies at
these points reducing the frequency of the LO branch by tens or
hundreds cm�1. Our model does not take into account such
effects.

Note that there exist graphene properties, like the lattice
thermal conductivity at room temperature, that seem to be
entirely determined by the lower frequency and the out-of-plane
phonon modes.68,69 In particular, it has been found that even
for higher temperatures, up to 800–1000 K, the contribution of the
high frequency LO and TO modes in the thermal conductivity
does not exceed a value of around 5%.68,69 Our proposed potential
may combine improved efficiency and accuracy for studying such
properties of graphene using atomistic simulations.

4 Conclusions

In conclusion, we introduced a torsional term for sp2 carbon
systems in order to complement the in-plane force field which
was presented previously.33 For this task, we performed DFT
calculations for two different, appropriately chosen, graphene-
nanoribbon structures that were folded around their middle line.
The torsional terms were fitted to reproduce the deformation
energy of these structures as a function of the folding angle. The
proposed torsional potential has the simple form of eqn (5). Our
aim was to keep the proposed force field as simple as possible,
targeting computational efficiency, for large scale simulations.
Indeed, in a test simulation with LAMMPS, our force field was
found to be 3 and 4 times faster than Tersoff/Tersoff-2010 and
LCBOP potentials, respectively.

The full proposed potential was tested in several character-
istic cases. More specifically, we demonstrated that, with the
inclusion of torsional terms, the linear dependence of the energy
of C40 fullerene isomers on the number of adjacent pentagons is
obtained, while the energy of the more favorable C60 and C40

fullerenes is accurately reproduced. Then, we showed that, in the
case of carbon nanotubes, the proposed potential reproduces the
1/D2 dependence of the strain energy on the nanotube diameter
D, while its predictions for the Young’s moduli of nanotubes as
a function of their diameter are in accordance with existing
calculations.

Finally, we calculated the phonon dispersion of graphene and
compared with other atomistic force fields and DFT, as well as to
experimental data. The performance of the present potential for
the phonon modes can be separated in two frequency regions.
For the high frequency phonons (op 4 1000 cm�1), especially for
LO, TO modes, our potential overestimates phonon frequencies
substantially, however, it is still better than Tersoff potential.
In the low frequency regime, op o 1000 cm�1 (including the
behavior of acoustic modes close to the G point), its accuracy is
quite satisfactory with results closer to the experimental data

Table 1 The RMSD error (in cm�1) of the phonon dispersion of graphene
for each phonon mode separately (first to sixth row) calculated with the
present force field, Tersoff, Tersoff-2010, and LCBOP atomistic potentials,
as well as using DFT. The error is calculated with respect to the experimental
points of the phonon dispersion of graphite.62,63 We also include the RMSD
error for (i) the overall data of all modes (seventh row), (ii) all but excluding
LO and TO modes (eighth row), (iii) the out-of-plane ZA and ZO modes
(ninth row), and (iv) all phonons with low frequencies op o 1000 cm�1

(tenth row)

Present
potential Tersoffa

Tersoff-
2010a LCBOPa

DFT/
LDA

ZA 25.7 71.5 38.8 99.9 18.6
ZO 49.4 37.5 238.8 97.8 26.6
LA 97.1 137.6 21.3 32.4 21.2
LO 273.7 773.1 36.1 32.8 130.4
TA 86.2 325.5 80.2 26.0 18.0
TO 446.0 479.7 294.7 264.3 46.7
All modes 235.7 472.2 149.8 118.1 72.9
All modes, excluding
LO and TO

75.3 192.4 121.2 67.1 21.2

Out-of-plane modes:
ZA and ZO

40.1 56.0 176.4 98.8 23.2

Small frequencies
(o103 cm�1)

55.5 191.4 132.8 71.9 19.5

a RMSD values are taken from ref. 66.
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and the DFT values as compared to other widely used atomistic
potentials. We stress the success of the present potential in
reproducing the ZA and ZO out-of-plane phonon modes of
graphene, very accurately, and in better agreement with experi-
ment compared to other recent and popular classical force fields.
This close agreement is a result of the out-of-plane torsional
terms introduced in the present work.
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