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Energetics of graphene flakes
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Based on the idea that the binding energy of a graphene flake is a sum of atomic energy contributions, which depend on
the local atomic environment of each atom of the flake, we propose a model for graphene flake energetics, which can very
accurately predict the cohesive energy Ucoh of graphene flakes. In our study, we calculate the cohesive energy of hexagonal
graphene flakes with up to ≈1000 atoms using the tight binding molecular dynamics method and we show that the calculated
Ucoh values fit extremely accurately to the Ucoh expression derived from the proposed model. For a further validation, we
show that the proposed Ucoh expression can very accurately predict the calculated Ucoh values of other graphene flakes with
random shapes. Based on that model, we show that the graphene flake stability obeys the following rules: (1) Between
isomers the most stable are those with the larger number of bonds (or equivalently, with the smaller number of edge atoms)
and (2) between isomers with the same number of bonds (or with the same number of edge atoms), the most stable are those
with the smaller number of zig-zag atoms.

Keywords: graphene flakes; energetics; cohesive energy; stability rules; model; tight binding molecular dynamics

1. Introduction

After the isolation of monolayer graphene sheets [1], it
was obvious that the study of the properties of graphene
flakes would follow. Graphene flakes have been experimen-
tally produced [2–8], and many of their properties have
been studied both theoretically [9–26] and experimentally
[3,4,27]. However, only some few computational studies [9–
11] have been dedicated to the graphene flake energetics, up
to date. Among those studies, Barnard and Snook [9] used
density-functional tight binding simulations to study the
energy dependence of hexagonal graphene flakes with un-
terminated, monohydride and dihydride edges. From their
energy plots, one can see that the cohesive energy Ucoh (i.e.
binding energy per atom) decreases monotonically versus
the number of atoms N. Nakajima and Shintani [10] used
classic potential molecular dynamics simulations to cal-
culate the energy of graphene disks and hexagonal flakes
with up to 5000 atoms. The figures they presented show a
monotonic decrease of Ucoh as a function of the flake di-
ameter. Kuc et al. [11] used the density functional-based
tight binding method to calculate the energy of graphene
flake isomers of various topologies, with up to 220 atoms.
From their study, they concluded that among those isomers
the most stable are the circular flakes, while the least stable
are the very narrow ones. Based on the consideration that
the cohesive energy Ucoh of the flakes should depend on
the edge-to-surface ratio, they concluded that the cohesive

∗Corresponding author. Email: fthenak@msu.edu

energy of a graphene flake should be written as

Ucoh = ε∞ + c
Ns

N
(1)

or

Ucoh = ε∞ + c′
√

N
, (2)

where ε∞ is the cohesive energy of graphene, Ns is the
number of edge atoms and c, c′ are adjustable constants.
However, plotting Ucoh against 1/

√
N they found that the

overall behaviour of Ucoh against 1/
√

N is far from linear,
but there is a much better linear correlation between Ucoh

and Ns/N.
With the present study, we improve the above-

mentioned works. We introduce a new model, based on the
assumption that the energy of a cluster depends on the local
atomic environment of the cluster atoms. Similar approach
has been proposed by Tománek et al. [28], for the estimation
of the cohesive energy of transition metal clusters. Based
on the proposed model we present an expression for Ucoh,
which can very accurately predict the cohesive energy of
any graphene flake.

To show the validity of the proposed model, we first cal-
culate the cohesive energy values of the hexagonal graphene
flakes with up to ≈1000 atoms, using the tight binding

C© 2013 Taylor & Francis
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molecular dynamics method [29–31]. Then using some
reasonable assumptions for the local atomic environment
of the flake atoms and gradually improving them, we derive
general expressions for the cohesive energy of graphene
flakes, with increasing accuracy. Using those expressions,
we derive expressions especially for hexagonal graphene
flakes with zig-zag edges (HGF-ZZ). Fitting the calculated
Ucoh values of HGF-ZZ to those expressions, we test their
ability to reproduce accurately the calculated Ucoh values.
In our third improving attempt, we show that the calculated
Ucoh values can be fitted extremely accurately to the expres-
sion Ucoh = A + B/

√
N + C/N , where A, B and C are ad-

justable parameters. Then going back to the corresponding
general expression for Ucoh, we show that it can reproduce
very accurately the calculated Ucoh values of other graphene
flakes with various shapes.

It is worth noting that our investigation is restricted
to graphene flakes consisting of hexagonal rings, which
have more than two adjacent hexagonal rings. However,
the ideas of the proposed model can be also applied to
graphene flakes, which contain hexagonal rings with less
than three adjacent hexagonal rings and the validity of the
Ucoh expression, which would be derived, would be ex-
tended to all kind of graphene flakes. In addition, the ideas
of the proposed model could be probably applicable to other
two-dimensional (2-D) clusters, like for instance those of
graphene allotropes, boron nitride or some chalcogendides,
which also form 2-D structures.

2. The method

As already mentioned in the Introduction, we calculate the
cohesive energy of HGF-ZZ with up to ≈1000 atoms, us-
ing the tight binding molecular dynamics method. HGF-ZZ
are hexagonal fractions of the infinite graphene sheet, con-
structed by adding layers of hexagonal carbon rings around
a central hexagon (see Figure 1). It is obvious that those
structures can be characterised by the number n of those
layers. For convenience, let us call n-flake the HGF-ZZ,
which is constructed by n such layers, with the 1-flake being

the single C6 hexagonal ring. The first n-flakes are shown
in Figure 1. To optimise each n-flake using the damping
molecular dynamics technique, the corresponding fraction
of the infinite graphene sheet has been used as a starting
geometry.

The tight binding approximation has been described in
detail elsewhere [29–31], but we will give a brief description
for completeness. In the tight binding approximation, the
energy U of a system is written as U = Uatr + Urep + Ubond.

Uatr is the attractive term of the energy, which is writ-
ten as a sum over all the occupied electronic states of the
eigenenergies εi of the tight binding Hamiltonian H, i.e.
Uatr = ∑

i εin
(occ)
i , where H� i = εi� i and n

(occ)
i is the oc-

cupation number of the ith eigenstate. The tight binding
hamiltonian is expressed in a base of the atomic-like or-
bitals |i, l〉, where i denotes atoms and l atomic-like orbitals
of atom i. The matrix elements hll′

ij = 〈i, l|H |j, l′〉 of the

tight binding Hamiltonian, have the form hll′
ij = εilδij δll′ +

(1 − δij )V ll′
ij (rij )θ (rij − rcut). In this expression, the on-site

matrix elements εil are constant and they are given by Harri-
son’s scheme [32]. V ll′

ij (rij ) are the hopping integrals, which
are expressed as functions of the Slater–Koster parameters
[33] Vll′m(rij ) and the direction cosines. θ (rcut − rij ) is the
well-known step function, used to restrict the interactions
only between first nearest neighbours. The scaling of the
Slater–Koster parameters with respect to the interatomic
distance is given by [29–31] Vll′m(rij ) = Vll′m(d)e−α(rij −d),
where Vll′m(d) are the Slater–Koster parameters at the
bulk interatomic distance d, as obtained by Harrison’s
scheme [32].

Urep is the repulsive term of the energy, which is
expressed as Urep = ∑

i>j �0e
−β(rij −d)θ (rcut − rij ), (i.e. a

sum of the pair potentials �0e
−β(rij −d) between first near-

est neighbours). �0, α and β are adjustable parameters,
which for our case take the values �0 = 4.015576 eV,
α = 0.77746 Å−1 and β = 4α. Those values are de-
termined by fitting the equilibrium bond length re and
vibrational frequency ωe of C2 to their experimental
values [34] re = 1.2378 Å and ωe = 1829.57 cm−1,
respectively.

Figure 1. Construction of HGF-ZZ. Each n-flake is constructed by adding a layer of hexagons around the (n − 1)-flake.
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Molecular Physics 3291

Ubond is a correction term, firstly introduced by
Tománek and Schlüter [35,36], which originally has the
form Ubond = N (a + b(nb/N ) + c(nb/N )2), where a, b and
c are adjustable parameters and nb/N is the number of
bonds per atom. In our case, we use the form Ubond =
N (a + b(nb/N )) for simplicity. The adjustable parameters
a and b were determined by fitting the cohesive energy
of the equilibrium geometry of C2 and Ih-C60, to the val-
ues Ucoh(C2) = −3.10 eV (see Ref. [34]) and Ucoh(C60) =
−6.96 eV (see Ref. [37]), respectively, and they take the val-
ues a = 17.20 eV and b = 55.55 eV. The value of Ucoh(C60)
has been determined from the experimental value of the for-
mation energy for the interaction 60C(graphene)−→C60,
which is 23.5 − 26.0 eV per C60 molecule [37] or
0.41 ± 0.02 eV/atom. Since the cohesive energy of
graphene is [38] Ucoh(graphene) = −7.37eV, the cohesive
energy of C60 is Ucoh(C60) = −7.37 + 0.41 = −6.96 eV.

The dynamics of the system is governed by the forces
Fi = −∇iUatr − ∇iUrep − ∇iUbond acting on each atom-i,
where ∇iUbond = 0, ∇iUrep is given by an analytic expres-
sion and ∇iUatr is obtained using the Hellman–Feynman
theorem for εj, ∇ iεj = 〈� j|∇ iH|� j〉. At each time step of
the molecular dynamics procedure, the Newton’s equations
of motion are solved numerically, using a fifth order Gear’s
predictor–corrector algorithm [39] and then the velocity of
each atom is lowered by 0.1%. The optimum energetically
structure of each flake is obtained when all the forces are
smaller than a force tolerance value, which in our case is
10−4 eV/Å or smaller.

3. The model

The model, which is proposed here, is based on the as-
sumption that the binding energy Ubind of a cluster can be
written as a sum of energy contributions from each atom of
the cluster, which depend on the local atomic environment
of each particular atom of the cluster. In the most general
case, the cohesive energy Ucoh of an N-atom cluster should
be written as

Ucoh = 1

N
Ubind = 1

N

N∑
i=1

V
(atom)
i , (3)

where V
(atom)
i is the above-mentioned energy contribution

of atom-i to the binding energy Ubind of the cluster.
According to the model, the atoms of a cluster with the

same local atomic environment contribute the same to the
binding energy. Therefore, those atoms can be considered
as group and Equation (3) could be written as

Ucoh =
ng∑
i=1

ni

N
Vi, with

ng∑
i=1

ni = N, (4)

where ni is the number of the members of group i, Vi is the
energy contribution of each atom of that group and ng is the
number of those different groups. Obviously, the number
of the free parameters Vi of the model is determined by the
number ng of those different groups. The main task there-
fore is to properly choose those atom groups, making some
reasonable assumptions for the local atomic environment.
For instance, if a cluster retains the atomic arrangement of
the bulk material far from its boundaries (as it happens with
the HGF-ZZ of our study), then the bonding between the
atoms far from the boundaries should be more or less the
same with that of the bulk material. Therefore the atoms
far from the boundaries may be considered as a group hav-
ing the same local atomic environment. The contribution
of this group of atoms to the binding energy will increase
as the number of cluster atoms increases and will become
dominant for large clusters. If Vbulk is the contribution of
each one of them to the binding energy, then Equation (4)
could be written as

Ucoh = Vbulk +
∑

i,i �=bulk

ni

N
(Vi − Vbulk). (5)

Obviously, Vbulk is the cohesive energy of the bulk mate-
rial, since for all the other contributions ni/N −→ 0, for
N −→ ∞. Let us assume, therefore, that the energy con-
tribution of the ‘boundary’ atoms is different from that of
the ‘bulk’ atoms and let us use this assumption as a starting
point to derive a model for the graphene flake energet-
ics. For simplicity, let us assume that the atoms, which are
considered as ‘boundary’ atoms, are only the twofold co-
ordinated atoms, while the threefold coordinated atoms are
considered as ‘bulk’ atoms.

4. Results and discussion

Based on the assumption above, we propose three models
of increasing complexity for the graphene flake energet-
ics. In the simplest model, we assume that the contribution
of each atom of the flake to the binding energy depends
only on the number of sp2 bonds associated with that atom.
Therefore, if V2 and V3 are the energy contributions from a
twofold and threefold coordinated atom, respectively, then
V2 = Vb and V3 = 3/2Vb, where Vb is the average bond
strength, including an average contribution from the pz or-
bitals. This description is equivalent to the assumption that
each bond contributes to the binding energy, an amount of
energy equal to Vb and consequently the energy depends
on one parameter only (Vb, or V3, or V2). In the second
model, we assume that V3 and V2 are independent parame-
ters and therefore Ucoh will depend on two parameters (V3

and V2). In the third model, we assume that V2 is differ-
ent for zig-zag atoms and arm-chair atoms. A zig-zag atom
is connected with two threefold coordinated atoms, while
an arm-chair atom is connected with one twofold and one
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3292 Z.G. Fthenakis

threefold coordinated atom. In the case of our hexagonal
flakes, the zig-zag atoms appear at the edges, while the
arm-chair atoms appear at the corners. Consequently, the
assumption that the local atomic environment of a zig-zag
atom is different from that of an arm-chair atom, is rea-
sonable. If Vac and Vzz are the contributions to the binding
energy of each arm-chair (corner) and zig-zag (edge) atom,
respectively, then Ucoh will depend on three parameters (V3,
Vac and Vzz). For convenience, let us call those models ‘the
one-parameter model’, ‘the two-parameter model’ and ‘the
three-parameter model’, respectively.

For the one-parameter model (1-PM)

Ucoh = nb

N
Vb = 2

3

nb

N
V3, (6)

where nb is the total number of bonds of the flake. It is
easy to show that each n-flake can be constructed by adding
6(2n + 1) atoms around the (n − 1) flake (see Figure 1).
Therefore the number N of the total number of atoms of an
n-flake is

N = 6
n∑

k=1

(2k − 1) = 6n2. (7)

Let us denote by n2 and n3 the number of the twofold
and threefold coordinated atoms of an n-flake, respec-
tively. It is easy to show that n2 = 6n. Using Equation (7),
we find n2 = 6n = √

6N and n3 = N − n2 = 6n(n − 1) =
N − √

6N . Consequently, nb/N = 3n3/(2N ) + n2/N =
3/2 − n2/(2N ) = 3/2 − √

3/(2N ) and Equation (6) be-
comes

Ucoh =
(

1 −
√

2

3N

)
V3. (8)

For the two-parameter model (2-PM),

Ucoh = n3

N
V3 + n2

N
V2 = V3 + n2

N
(V2 − V3). (9)

Using the relations between n2 and n3 with N for the HGF-
ZZ, Equation (9) becomes

Ucoh = V3 +
√

6(V2 − V3)√
N

. (10)

As one can see, this equation has the same functional form
with Equation (2) of Kuc et al. [11], indicating a linear
relation between Ucoh and N−1/2.

For the three-parameter model (3-PM),

Ucoh = n3

N
V3 + nzz

N
Vzz + nac

N
Vac, (11)

where nac and nzz denote the number of arm-chair and
zig-zag atoms of the flake, respectively. It is obvious that

for the HGF-ZZ, nac = 12 and nzz = n2 − nac, and conse-
quently nzz = 6(n − 2) = √

6N − 12. Thus, for the HGF-
ZZ, Equation (11) can be written as

Ucoh = V3 +
√

6(Vzz − V3)√
N

+ 12(Vac − Vzz)

N
. (12)

According to Equation (8), Ucoh of HGF-ZZ is linear
on 1 − √

2/(3N ), with zero intercept. According to Equa-
tion (10), Ucoh of HGF-ZZ is linear on 1/

√
N . According to

Equation (12), Ucoh of HGF-ZZ has a quadratic dependence
on 1/

√
N . Using the least square fitting method, we can see

which model fits better to the Ucoh calculated values.
InFigure 2, we present the calculated Ucoh values of the

HGF-ZZ of our study against 1 − √
2/(3N ) (Figure 2(a))

and 1/
√

N (Figure 2(b) and (c)), together with the least
square fitting lines predicted by Equations (8), (10) and
(12), respectively. The calculated Ucoh values are depicted
with the black circles. The red dashed lines represent the
above least square fitting lines. In the insets of those fig-
ures, we show the difference �Ucoh between calculated and
fitted values for each model. The adjustable parameters of
each model, obtained from the fittings are shown in the left
part of Table 1. Considering that the energy contribution
to the binding energy of each atom of the flake, could be
equally partitioned to the bonds of that atom, we can es-
timate the strength of each bond using the values of V3,
V2, Vac and Vzz. Thus, the strength of the bonds for the
one-parameter model is Vb = 2V3/3. For the two-parameter
model V

(3)
b = 2V3/3 and V

(2)
b = V2, where V

(3)
b and V

(2)
b

are the strengths of the surface and the edge atom bonds,
respectively. For the three-parameter model, Vac−ac = Vac,
Vac−3 = Vac/2 + V3/3, Vzz−3 = Vzz/2 + V3/3 and V3 − 3 =
2V3/3, where Va − b denotes the strength of the bond be-
tween a and b type of carbon atoms. The values of the
strength of the bonds for the three models are shown in the
right part of Table 1.

As we can see from the inset of Figure 2(a), |�Ucoh| <

15 meV, indicating an almost linear dependence of Ucoh

on 1 − √
2/(3N ). However, a more detailed examination of

Figure 2(a) shows that the calculated Ucoh values exhibit a
small curvature against 1 − √

2/(3N ), which is also shown
from the �Ucoh values of the inset. Consequently, the one-
parameter model needs improvement.

Since Ucoh does not have a linear dependence on
1 − √

2/(3N ), it will also not have a linear dependence on
1/

√
N , because N−1/2 and 1 − (3N/2)−1/2 are linearly re-

lated. This can be clearly seen in Figure 2(b). Thus, the two-
parameter model is also not adequate to describe correctly
the graphene flake energetics. However, the small values of
�Ucoh (|�Ucoh| < 20 meV) presented in the inset of Fig-
ure 2(b), indicate that the relation between Ucoh and 1/

√
N

is not far from linear. Moreover, the very small difference
between V

(3)
b and V

(2)
b (they differ only by ≈0.015 eV)

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 0

0:
50

 2
7 

N
ov

em
be

r 
20

13
 



Molecular Physics 3293

Table 1. Parameters (left part of the table) and bond strength (right part of the table) of the one-, two- and three-parameter models.

Parameters 1-PM 2-PM 3-PM 1-PM 2-PM 3-PM

V3 −7.2804 −7.2834 −7.3143 Vb = −4.8536 V
(3)
b = −4.8556 V3−3 = −4.8762

V2 −4.8412 V
(2)
b = −4.8412 Vac−3 = −4.8559

Vzz −4.5754 Vzz−3 = −4.7258
Vac −4.8356 Vac−ac = −4.8356

Figure 2. (Color online) (a) Cohesive energy of HGF-ZZ versus 1 − √
2/(3N ). The fitting line corresponds to Equation (8) of the 1-PM.

(b) Cohesive energy of HGF-ZZ versus 1/
√

N . The fitting line corresponds to Equation (10) of the 2-PM. (c) Cohesive energy of HGF-ZZ
versus 1/

√
N . The fitting line corresponds to Equation (12) of the 3-PM. (The insets of (a), (b) and (c) show the difference �Ucoh between

calculated and fitted values of each model.) (d) The absolute difference �Ucoh between calculated and fitted values for the non-hexagonal
flakes, which were used to test the validity of the three models. (e) The structures of the non-hexagonal flakes used to test the validity of
the three models.
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3294 Z.G. Fthenakis

indicates that the one- and the two-parameter models do
not differ dramatically with each other. This can also be
seen comparing the deviations �Ucoh of the two models,
which are more or less the same.

A quadratic fitting to the calculated Ucoh values ver-
sus 1/

√
N (see Figure 2(c)) shows clearly that Equation

(12) of the three-parameter model fits extremely accu-
rately to the calculated Ucoh values. From the inset of
Figure 2(c) we can see that |�Ucoh| < 3 meV, which is
five times smaller than the corresponding value (0.015 eV)
for the one- and two-parameter models. Moreover, V3−3 <

Vac−3 < Vac−ac < Vzz−3. The (3 − 3), (ac − 3) and (ac −
ac) bonds seems to have almost the same strength, differing
with each other by ≈0.02 eV. The (zz − 3) bond seems to be
the weakest, with ≈0.11 eV bond-strength difference from
the (ac − ac) bond. This difference is considerably higher
than the corresponding difference between V

(3)
b and V

(2)
b

of the two-parameter model, which is only 0.015 eV. How-
ever, any comparison between bond strengths needs further
investigation, because their differences seem to be very
small and they might be affected by the fitting.

To test the validity of Equation (11), we calculate the
cohesive energy of several non-hexagonal graphene flakes
using the tight binding molecular dynamics method and
we compare the calculated cohesive energy values with the
values obtained by Equation (11). We also compare the
calculated Ucoh values of those non-hexagonal flakes with
the predictions of Equations (6), (8)–(10) and (12), which
has been derived from the one-, two- and three-parameter
models. The graphene flakes we use for the validity test, are
shown in Figure 2(e) and they include elongated structures
along the arm-chair and the zig-zag edges (structures A and
B, respectively), square-like structures (C, D and E), a trian-
gular structure (F) and complicated shape flakes (G and H),
constituting a representative set of random graphene flakes.
In Figure 2(d) we show the absolute value of �Ucoh for
Equations (6), (8)–(12). As one can see, the smallest error
corresponds to the general equation of the three-parameter
model (Equation (11)), which indicates that Equation (11)
is valid not only for HGF-ZZ, but also for graphene flakes
with random shape.

As expected, the errors corresponding to the general
equations of the three models (Equations (6), (9) and (11))
are always smaller than the errors corresponding to the
equations for HGF-ZZ (Equations (8), (10) and (12)) and
the errors corresponding to the one- and two-parameter
models are almost the same with each other, either for
the general expressions (Equations (6) and (9)), or for the
expressions corresponding to HGF-ZZ (Equations (8) and
(10)).

Among the errors of the expressions of the three mod-
els for HGF-ZZ (Equations (8), (10) and (12)), the error of
Equation (12), corresponding to the three-parameter model
is smaller. Moreover, the prediction error of those three
equations is smaller for the cyclic structures C, D and E

than the others structures, approaching the error of the gen-
eral expressions. As the shape deviates from cyclic, the
error increases, following the sequence: triangle (structure
F), elongated structures (A and B) and complicated shape
structures (G and H).

The maximum error for the general expressions of the
three models appears for structure B, which is a narrow
elongated structure. Its value is much higher compared to
the corresponding maximum error, which appears in the
inset of Figure 2(c). This indicates that Equation (11) might
possibly be further improved so that the prediction error
for any graphene flake would become comparable to the
values presented in the inset of Figure 2(c). However, using
HGF-ZZ for the determination of our model, Equation (11)
cannot be further improved.

Let us assume that except of the three local atomic
environments we have assumed that they affect the co-
hesive energy in the three-parameter model, there is an-
other one, which also affects the cohesive energy. Under
these conditions and according to Equation (4), the co-
hesive energy should be written as Ucoh = ∑4

i=1 Vini/N ,
depending on the four adjustable parameters Vi. For HGF-
ZZ, ni = a′

in
2 + b′

in + ci , i = 1, 2, 3, 4 or (using Equa-
tion (7)) ni = aiN + bi

√
N + ci , with a′

i , b′
i , ai, bi and ci

being constants. With those expressions for ni, Ucoh will be
written again as Ucoh = A + B/

√
N + C/N , which means

that the number of the independent adjustable parameters
of the model is reduced to three, exactly as it happens in
the three-parameter model. Therefore, if only HGF-ZZ are
used for the fitting, the number of independent Vi parame-
ters are only three. Consequently, any assumption of more
than three local atomic environments is useless. On the
other hand, if for the determination of the parameters Vi,
other graphene flakes were involved (so that ni were not
given from the same expression ni = aiN + bi

√
N + ci

for all the flakes), then the number of the adjustable param-
eters of the model would not be reduced to three and an
improvement of Equation (11) might be possible.

Based on the results presented in our study, we can now
understand why Kuc et al. [11] observed a linear relation
between Ucoh and Ns/N, but not between Ucoh and 1/

√
N .

Obviously, the observed linear relation between Ucoh and
Ns/N is exactly the general prediction of the two-parameter
model (see Equation (9)), which (as we have already shown)
is just a good approximation of the more accurate Equa-
tion (11) of the three-parameter model. Therefore, for the
random shape graphene flakes of Kuc et al., the observed
linear relation between Ucoh and Ns/N is reasonable. On
the other hand, a possible linear relation between Ucoh

and 1/
√

N can be derived from Equation (9), if and only
if Ns(= n2) ∝ √

N . This proportionality is approximately
correct for cyclic flakes (like the structures C, D and E of
Figure 2(e)) because for cyclic flakes the edge-to-surface
ratio is proportional (or almost proportional) to

√
N ). How-

ever, for not cyclic flakes, the edge-to-surface ratio is not
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proportional to
√

N , not even approximately, and conse-
quently, for those structures the relation between Ucoh and
1/

√
N is far for linear.

The cohesive energy of cyclic graphene flakes can be
also expressed as a function of their diameter d. The di-
ameter d of a cyclic flake is proportional to

√
N . Con-

sequently, Equation (12) could be written as Ucoh = A +
B ′/d + C ′/d2, where A, B′ and C′ are adjustable con-
stants. This equation seems to agree with the Nakajima and
Shintani [10] plots, which show the Ucoh values of families
of cyclic graphene flakes as a function of their diameter d.
Nakajima and Shintani use some fitting curves to fit those
points; however, they do not report anything about the form
of those fitting curves.

It is worth noting that Equation (12) represents the
2-D expression of the liquid drop model [40–51]. Accord-
ing to the liquid drop model for the three-dimensional
(3-D) clusters, the cohesive energy is given by Ucoh =
Ab + Af N−1/3 + AeN

−2/3 + AcN
−1, where Ab, Af, Ae and

Ac are constants. In the above equation, Ab represents the
bulk cohesive energy and the rest of the terms represent cor-
rections to Ab due to the surface effects. Thus, the second
term represents the facet atoms correction and is propor-
tional to the surface-to-bulk ratio N−1/3. The third term
represents the edge atoms correction and is proportional to
the edge-to-bulk ratio N−2/3. The fourth term represents the
vertex atoms correction and is proportional to the vertex-
to-bulk ratio N−1. In a 2-D cluster, the analogue of the
bulk, face and edge atoms are the surface, edge and corner
atoms, respectively. Obviously, there is not any 2-D ana-
logue of the 3-D cluster vertex atoms and consequently, the
2-D analogue of the above equation will contain only three
terms. The first term will be a constant term representing
the surface atoms contribution, the second term will be
proportional to 1/

√
N (edge-to-surface ratio), representing

the edge atom correction and the third term will be pro-
portional to 1/N (corner-to-surface ratio), representing the
corner atoms correction. The combination of those three
terms leads to Equation (12) and consequently Equation
(12) is the 2-D analogue of the above equation.

Based on the present work, two basic rules for the stabil-
ity of the graphene flakes can be derived. According to the
first rule, between isomers the most stable are those with the
larger number of bonds (or equivalently with the smaller
number of edge atoms). As we have seen, the strength of the
graphene flake bonds is almost the same for all the bonds
of the flake. The contribution of each bond to the binding
energy is ≈4.73 − 4.88 eV. Thus, the binding energy of a
graphene flake is approximately proportional to the num-
ber of its bonds. Consequently, between two isomers the
more stable is the one with the larger number of bonds.
Since nb/N = 3/2 − n2/2N, isomers with the same num-
ber of bonds nb, have the same number of edge atoms n2.
Consequently, between two isomers the more stable is the
one with the smaller number of edge atoms (i.e. twofold

coordinated atoms). According to the second rule, between
isomers with the same number of bonds (or equivalently
with the same number of edge atoms), the most stable are
those with the smaller number of zig-zag atoms. Bearing
in mind that Vzz > Vac, the second rule is directly derived
from the first rule. The edge atoms would be either zig-zag
or arm-chair atoms and consequently between two isomers
with the same number of edge atoms the cohesive energy
will be smaller for the isomer with less zig-zag atoms.
Those two rules can be used for a raw estimation of the
stability of graphene flakes, before an accurate prediction
using Equation (11).

5. Conclusion

In the present work, we propose a model for the energet-
ics of graphene flakes, which is based on the idea that the
binding energy of a cluster is a sum of atomic energy con-
tributions, which depend on the local atomic environment
of each atom of the cluster. We showed that the proposed
model can reproduce very accurately the cohesive energy
of graphene flakes calculated using the tight binding molec-
ular dynamics method.

We first calculated the cohesive energy values of HGF-
ZZ with up to ≈1000 atoms, which we fit to the cohe-
sive energy expressions proposed by the model in order to
determine their adjustable parameters. We presented three
such expressions with increasing level of accuracy and their
counterparts for HGF-ZZ, which are derived from the gen-
eral expression. Equation (11), which is the expressions
with the highest level of accuracy, fits extremely accurately
to the HGF-ZZ cohesive energy values and can reproduce
very accurately the cohesive energy of other graphene flakes
with various shapes. Equation (11) has been derived con-
sidering different local atomic environments between the
threefold coordinated atoms, the zig-zag atoms and the
arm-chair atoms. We further showed that Equation (12)
(the counterpart of Equation (11) for HGF-ZZ) can be con-
sidered as the 2-D analogue of the liquid drop model.

We also showed that the stability of graphene flakes
obeys the following rules: (1) between isomers the most
stable are those with the larger number of bonds (or
equivalently with the smaller number of edge atoms) and
(2) between isomers with the same number of bonds (or
equivalently with the same number of edge atoms), the most
stable are those with the smaller number of zig-zag atoms.

Our study is restricted to graphene flakes with hexag-
onal rings having more than two adjacent hexagonal rings,
but the proposed model can be easily generalised to cover
all the graphene flakes.
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