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Abstract of the main manuscript: Si2BN has been recently predicted theoretically as a new
entirely planar 2-dimensional material with a honeycomb-like structure, (like graphene), which is
stable even at T > 1000 K. In the present work we study the structural deformations and mechanical
properties of Si2BN and graphene under both uniaxial (along the direction of the arm chair and zig-
zag chains) and uniform biaxial tensile strain till the fracture limit and we compare those properties
of the two structures with each other. According to our findings, in the Si2BN structure, Si-Si and
Si-B bonds are weaker than B-N and Si-N bonds, respectively, contrary to graphene bonds, which
all have the same strength. In particular, B-N bond lengths of Si2BN remain almost unchanged
under the strain conditions we studied, not exceeding ≈ 6% of their initial length. Si2BN was found
to be anisotropic, exhibiting large Young’s and biaxial modulus values of the order of 1/3 and 2/5
of that of graphene, respectively. The different bond strengths in Si2BN explains its anisotropy and
makes it behave very differently under strain when compared to graphene.

PACS numbers:

I. INSTABILITY OF Si2BN FOR UNIFORM BIAXIAL STRAIN BEYOND ε = 0.12

According to our findings, the Si2BN structure becomes unstable if the uniform biaxial strain increases from ε = 0.12
to ε = 0.13 and any further increase in strain causes the breaking of the Si-Si bonds along a zig-zag chain leading to
the formation of Si2BN ribbons, rather than having elongated (due to the strain) Si-Si bonds. Interestingly, however,
the optimized structures obtained for ε = 0.12 and 0.13 (shown in the left and the center of Fig. 1, respectively), did
not initially favor the ribbon formation and thus concealing the evidence of instability for ε > 0.13. In particular, the
energy as a function of the conjugate gradient steps for the optimization under ε = 0.13 is shown with the black line in
Fig. 1. However, distorting that optimized structure by shifting in the arm chair direction the topmost zig-zag chain
of the unit cell by +δ, the second one by +2δ and the third one by +3δ, where δ = 0.002 in fractional coordinates,
and optimizing the structure again, the structure finds a lower energy minimum corresponding to the structure shown
in right side of Fig. 1, where the breaking of the Si-Si bonds and the ribbon formation is evident. As we can see,
between approximately the 10th and the 40th conjugate gradient step, the structure tended to reach the minimum
that was previously found. However, optimization moved the structure past that minimum and into a even lower one.
It is worth noting that along the conjugate gradient path that was followed after the 40th step no barrier was found
indicating that there exists at least one path in the potential energy surface connecting the previous and the new
minimum found. This lack of the existence of an energy barrier is proof that the previously found energy minimum
is not a true minimum and, therefore, the structure corresponding to it is unstable.
In contrast to these results for ε = 0.13, the optimization of the similarly distorted structure for ε = 0.12 led to the

same energy minimum as the one already found, which implies that either the ribbon formation is not favored under
those strain conditions, or there is an energy barrier that stabilizes the initially obtained optimum structure. The
energy along the optimization path for the distorted structure for ε = 0.12 is shown with the green line in Fig. 1.

II. FITTING DETAILS FOR THE YOUNG’S MODULUS AND POISSON’S RATIO

To estimate the Young’s modulus E for strain along either ezz or eac directions, we fit a quadratic form to the
points (ε, σ), as well as a linear and a quadratic form to the points (ε, σ/ε), where ε and σ are the strain and the
stress, respectively, along the same direction (ezz or eac), for −0.05 ≤ ε ≤ 0.05.
To estimate the Poisson’s ratio ν along the same strain directions, we fit a quadratic form to the points (ε, −ε⊥/ε)

for −0.05 ≤ ε ≤ 0.05.

• For Si2BN
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FIG. 1: (Color online). Strain energy per atom vs conjugate gradient optimization steps for distorted Si2BN structure under
strain ε = 0.12 (green) and ε = 0.13 (red), as well as non-distorted structure for ε = 0.13 (see text for details).

– For Young’s modulus along ezz direction

σ = 0.002193+ 328.33ε− 614.18ε2 (quadratic), E = 328 GPa (1)

E = σ/ε = 329.46− 612.01ε (linear), E = 329 GPa (2)

E = σ/ε = 331.29− 611.96ε− 1665ε2 (quadratic), E = 331 GPa (3)

We adopt the value E = 330± 2 GPa.

– For Young’s modulus along eac direction

σ = 0.0053729+ 374.16ε− 562.68εy (quadratic), E = 374 GPa (4)

E = σ/ε = 375.86− 557.31ε (linear), E = 376 GPa (5)

E = σ/ε = 378.61− 557.31ε− 2497.8ε2 (quadratic), E = 379 GPa (6)

We adopt the value E = 376± 3 GPa

– For Poisson’s Ratio along ezz direction

ν = −ε⊥/ε = 0.30317− 0.38775ε− 2.1073ε2 (quadratic), ν = 0.303 (7)

– For Poisson’s Ratio along eac direction

ν = −ε⊥/ε = 0.34506− 0.82479ε+ 0.54055ε2 (quadratic), ν = 0.345 (8)
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• For graphene

– For Young’s modulus along ezz direction

σ = −0.0048979+ 964.19ε− 2379.3ε2 (quadratic), E = 964 GPa (9)

E = σ/ε = 964.20− 2384.4ε (linear), E = 964 GPa (10)

E = σ/ε = 964.23− 2384.2ε+ 25.043ε2 (quadratic), E = 964 GPa (11)

Therefore, E = 964 GPa.

– For Young’s modulus along eac direction

σ = −0.0078108+ 960.84ε− 1983.1ε2 (quadratic), E = 961 GPa (12)

E = σ/ε = 963.39− 1990.9ε (linear), E = 963 GPa (13)

E = σ/ε = 967.50− 1990.9ε− 3739.6ε2 (quadratic), E = 968 GPa (14)

We adopt the value E = 964± 4 GPa.

– For Poisson’s ratio for strain along ezz

ν = −ε⊥/ε = 0.19007− 0.43003ε− 1.6275ε2, (quadratic), ν = 0.190 (15)

– For Poisson’s ratio for strain along eac

ν = −ε⊥/ε = 0.18858− 0.68131ε+ 1.5506ε2, (quadratic), ν = 0.189 (16)

III. UNDERSTANDING THE DIFFERENT BEHAVIOR OF POISSON’S RATIO IN Si2BN FOR

STRAIN ALONG eac AND ezz DIRECTIONS

To understand these behaviors we have to bear in mind that the lengths a and b of the vectors a and b, respectively,
under strain along either eac or ezz directions, are

a = 4 (dSi−N sin(φ1/2) + dSi−B sin(φ2/2)) (17)

and

b = 2 (dSi−Si + dB−N + dSi−N cos(φ1/2) + dSi−B cos(φ2/2)) , (18)

where dA−B is the length of the bond between atoms A and B, and φ1 and φ2 are the angles Si-N-Si and Si-B-Si,
respectively. Consequently, the Poisson’s ratio for the two strain directions is

νac = −
ε⊥
ε

= −
a− a0
a0ε

= −
4

a0ε
(dSi−N sin(φ1/2) + dSi−B sin(φ2/2)− d0,Si−N sin(φ01/2)− d0,Si−B sin(φ02/2))

= −
4

a0

(

d0,Si−N

δ sin(φ1/2)

ε
+ d0,Si−B

δ sin(φ2/2)

ε
+

δdSi−N

ε
sin(φ1/2) +

δdSi−B

ε
sin(φ2/2)

)

(19)

and

νzz = −
ε⊥
ε

= −
b− b0
b0ε

= −
2

b0ε
(dSi−Si + dB−N + dSi−N cos(φ1/2) + dSi−B cos(φ2/2)

−d0,Si−Si − d0,B−N − d0,Si−N cos(φ01/2)− d0,Si−B cos(φ02/2))

= −
2

b0

(

δdSi−Si

ε
+

δdB−N

ε
+ d0,Si−N

δ cos(φ1/2)

ε

+d0,Si−B

δ cos(φ2/2)

ε
+

δd0,Si−N

ε
cos(φ1/2) +

δd0,Si−B

ε
cos(φ2/2)

)

, (20)
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where a0, b0, d0,AB, φ01 and φ02 are the values of a, b, dAB, φ1 and φ2, respectively, at zero strain, and δdA−B =
dA−B − d0,A−B, δ cos(φi/2) = cos(φi/2)− cos(φ0i/2) and δ sin(φi/2) = sin(φi/2)− sin(φ0i/2), i = 1, 2. Therefore, the
expression for νac has four terms, while the one for νzz has six. Those terms correspond to specific contributions to
the Poisson’s ratio, and they are shown in Fig. 2.
It becomes clear from panel (a) of this figure that the second and third terms of the final expression of the above

equation for νzz (i.e the terms d0,Si−Nδ cos(φ1/2)/ε and d0,Si−Bδ cos(φ2/2)/ε) are the terms providing the most
important contributions to the Poisson’s ratio for strain along ezz. The rest of the terms are rather small and their
cumulative contribution is more or less constant with a value approximately equal to -0.1. Thus, summing up the
the third and fourth term and subtracting -0.1 from that sum, we take a curve very close to the curve of νzz, as
is shown with the light blue line in Fig. 2(a). This indicates that the behavior of νzz as a function of the strain is
mainly governed by the competition between these two terms, which represent the contributions from the bending of
the angles Si-N-Si and Si-B-Si. The former increases as a function of strain, while the latter decreases at first and
then increases with none of them showing a linear relation as a function of strain.
In turn, panel (b) of that figure shows the corresponding contributions to νac of the terms of the final expression

of the above equation for νac. As seen in the figure, all terms rise almost linearly with strain, having as a result an
almost linear decrease of νac as a function of strain. Again the main contributions come from the terms associated
with the angle bending deformations (i.e. from the first (d0,Si−N δ sin(φ1/2)/ε) and the second d0,Si−Bδ sin(φ2/2)/ε)
terms of that expression. What we can also see from that figure, is that the curve of the second term is very similar
to the curve of νac, which indicates that the rest of the terms are more or less canceled with each other.

IV. FITTING DETAILS FOR THE BIAXIAL ELASTIC MODULI Mx AND My

To find the biaxial elastic moduli Mx and My we fit a second, third and fourth order polynomial to the points (ε,
σx) and (ε, σx) for −0.05 ≤ ε ≤ 0.05. Second and third order polynomial fits were not as successful as the fourth
order, which were finally selected to derive the biaxial elastic moduli values. The fitting functions found were the
following:

• For graphene

σ = 1218.72ε− 6012.47ε2 (21)

σ = 1188ε− 6012.47ε2 + 17255.1ε3 (22)

σ = 1188ε− 6463.36ε2 + 17255.1ε3 + 215170ε4. (23)

• For Si2BN

σxx = 484.092ε− 2078.19ε2, (24)

σxx = 502.334ε− 2078.19ε2 − 10248.2ε3, (25)

σxx = 502.334ε− 2600.26ε2 − 10248.2ε3 + 249136ε4, (26)

and

σxx = 542.699ε− 2419.29ε2, (27)

σxx = 557.544ε− 2419.29ε2 − 8339.46ε3, (28)

σxx = 557.544ε− 2930.58ε2 − 8339.46ε3 + 243991ε4. (29)
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FIG. 2: (Color online). Contributions to the Poisson’s ratio from the terms of Eqs. 19 and 20 of ESI for Si2BN under strain
along (a) eac and (b) eac directions, respectively.

V. DERIVATION OF EQUATIONS FOR BIAXIAL MODULI FROM YOUNG’S MODULUS AND

POISSON’S RATIO

For uniaxial strain εx along x-direction, the Young’s modulus is Ex = σxx/εx and the Poisson’s ratio is νxy = −εy/εx.
Therefore, εx = σxx/Ex and εy = −νxyσxx/Ex.
Accordingly, for uniaxial strain εy along y-direction, the Young’s modulus is Ey = σyy/εy and the Poisson’s ratio

is νyx = −εx/εy. Therefore, εy = σyy/Ey and εx = −νyxσyy/Ey.
If strain is applied simultaneously in both directions, the strains εx and εy obtained for the two uniaxial strain
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directions will be combined, and the strains along x and y directions will be

εx =
σxx

Ex

− νyx
σyy

Ey

and εy = −νxy
σxx

Ex

+
σyy

Ey

, (30)

which leads to

σxx = Ex

εx + νyxεy
1− νxyνyx

and σyy = Ey

εy + νxyεx
1− νyxνxy

. (31)

For uniform biaxial strain, εx = εy = ε and consequently

σxx = Ex

1 + νyx
1− νxyνyx

ε and σyy = Ey

1 + νxy
1− νyxνxy

ε. (32)

Thus, the elastic moduli Mx = σxx/ε and My = σyy/ε become

Mx = Ex

1 + νyx
1− νxyνyx

and My = Ey

1 + νxy
1− νyxνxy

. (33)

In particular, for an isotropic material, like graphene, where Ex = Ey = E and νxy = νyx = ν, the above relations
yield

M = Mx = My =
E

1 + ν
(34)


