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Hunjan and Ramaswamy presented[Int. J. Mol. Sci. 3, 30 (2002); Phys. Rev. E66, 046704(2002)] a
method for global optimization, according to which the global minimum of a potentialVf can be found, if a
potential Vi (with a known global minimum) is transformed adiabatically in time toVf, with the use of a
switching function of timegstd, which interpolates between 0 and 1, and lies in the[0,1] interval. In the present
work, the method is examined in detail. With the use of a very simple one-dimensional hypothetical potential,
it is shown that the potential transformation may not always be followed by a global minimum transformation,
which indicates that the method may not always be safely applied in determining the global minimum. An
attempt to improve the method is made by allowing the switching functiongstd to take values outside the[0,1]
interval. This improved method is shown to succeed in three different realistic problems, for which the original
method fails.
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I. INTRODUCTION

The determination of the lowest energy configuration of
anN-atom cluster is an old but still open problem. Although
several methods have been proposed for global optimization
(GO) (see, for example, Refs.[1–13]), a general method un-
ambiguously determining the global minimum(GM) is still
far from reach. The only way to ensure a GM of a potential
energy surface(PES) is the complete knowledge of the PES.
In most cases, this implies an extensive search over all the
configuration space of the cluster, which is feasible only for
small clusters. However, it becomes increasingly harder for
larger ones. Actually, the number of minima rises exponen-
tialy with the number of the cluster atoms[14,15] [for ex-
ample, the PES of the Lennard-Jones(LJ) 55-atom cluster,
excluding permutational isomers, has at least 1010 minima
[4]]. Thus, there is always a doubt about the GM determina-
tion of a GO method. In most cases, especially for large
clusters, the lowest minimum is accepted as the GM until a
lower minimum is found.

GO methods have been evolved in order to avoid this
laborious extensive search, confining it to areas of the cluster
configuration space where the GM is likely to be found.
However, they still have the disadvantage that they could be
trapped in a local minimum(LM ). This is a major problem
for all these methods and several techniques have been sug-
gested to overcome the problem(see, for example, the jump-
walking method[16] or the taboo search method[17] applied
to improve the simulated annealing method).

GO methods can be separated into four categories:(a)
gradient-based methods(Newton’s method, steepest descent,
conjugate gradient, etc.), (b) stochastic methods(simulated
annealing[1], genetic algorithms[6–8], etc.), (c) potential
deformation methods(diffusion equation method[11], dis-
tance scaling method[5], and(d) combinatorial methods(ba-

sin hopping[2–4], stochastic approximation with smoothing
[12,13], Hunjan-Ramaswamy(HR) method [9,10], etc.)
which combine aspects from the three former classes of
methods. This paper is primarily focused on the applicability
of the HR method. However, a short reference to the existing
methods will follow for completeness purposes.

Given a good starting point, the gradient-based methods
find the GM quite rapidly, either using molecular dynamics
(Newton’s method) or following the PES gradient at the
starting point(steepest descent or conjugate gradient). A ma-
jor disadvantage of these methods is the choice of the start-
ing point, which may lead to a trapping of the solution in the
closer LM, failing to reach the GM.

Stochastic methods(especially the simulated annealing
method[1]) have the disadvantage that they often require a
large amount of CPU time to obtain an acceptable degree of
reliability for their results. The simulated annealing algo-
rithm is one of the earliest proposed methods for GO and
became quite popular. Nowadays it is not as popular as it
was earlier due to its computational expense and inability to
escape from trapping at low temperatures.

Related to the simulated annealing method, is a combina-
torial method, the so-called “basin hopping” method, first
introduced by Li and Scheraga[2] and further improved by
Wales and Doye[3,18]. This method has gained interest due
to its success in predicting the correct GM structure for noni-
cosahedral LJ clusters and especially the 38- and 75-atom LJ
clusters. To date, basin hopping seems to be the most effi-
cient GO method for LJ clusters containing up to 100–150
atoms. Its results are comparable only to the so-called “ge-
netic algorithm” method. The main disadvantage of the
method is that it is time consuming due to the large number
of local minimizations required.

Evolutionary or genetic algorithms provide a different ap-
proach to the GO problem[6–8]. These algorithms try to
mimic some aspects of biological evolution and, as men-
tioned earlier, their success is comparable to the basin hop-
ping results. According to a genetic algorithm, an initial
population of cluster geometries is randomly constructed.*Electronic address: fthenak@iesl.forth.gr
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From this population, the structures with low energy are se-
lected for “reproduction.” In the reproduction phase, new
clusters are derived via recombination and mutation and a
new cluster “generation” is produced. Repeating this itera-
tion scheme until it converges, it derives the GM, which can
be further locally optimized for a more accurate result.

Finally the category of potential deformation methods
provides a different approach to the GO problem. Within
these methods a transformation is applied to the PES which
smooths it out, thus reducing the number of its minima and
making the search for the GM easier. The GM of the de-
formed PES is then mapped back with the reverse transfor-
mation, in the expectation that it will lead to the GM of the
original PES. Nevertheless, it is not guaranteed that the GM
of the deformed PES will be mapped back to the GM of the
original PES[19,20].

From the above, it becomes clear that to date no method
can safely determine the GM but rather they could be used as
complementary to each other. The interest in this work is
focused on the HR method and its safe applicability.

The HR method[9,10] is categorized as a combinatorial
method. It is a combination of a potential deformation
method with molecular dynamics. The difference between
the HR and the other potential deformation methods is that
the PES is not smoothed to a PES with fewer minima. In-
stead, a PES with a known GM is mapped to the original
PES.

To find the GM, Hunjan and Ramaswamy simply used
molecular dynamics(MD) including damping forces acting
on the atoms of the clusters; namely, they solve the following
equations of motion:

mrẄi + grẆi = − ¹iV, i = 1,2,…,N, s1d

where m is the mass of each atom of the cluster,g is the
damping factor,rWi is the position vector for theith atom, and
V is the potential for theN-atom cluster. AsV they introduce
a time dependent potential which is a combination of two
different potentials, having the form

Vstd = VisrWdgstd + VfsrWdf1 − gstdg, s2d

where gstd is an adiabatically varying switching function
ranging between 1 and 0fgst=0d=1,gst→`d=0g. That is,
Vst=0d=Vi and Vst→`d=Vf. Hence, the PES evolves in
time in such a way that the initial potentialVi is transformed
adiabatically into the final potential of interestVf. The MD
simulation uses the GM configuration of the initial potential
Vi and the time dependent potential already described. Under
these conditions, it is expected that the cluster will follow a
trajectory in the time dependent configuration space, very
close to the trajectory that the GM of the time dependent
potential would have followed. According to the HR method,
when the time dependent potential becomes equal to the final
potential(with no time dependence any more) the GM of the
final potentialVf is reached.

Hunjan and Ramaswamy, in their first work[9], used this
method to find the GM configuration of clusters described by
the Sutton-Chen(SC) [21] potential, starting from the GM
configuration of the Lennard-Jones associated clusters. In a

subsequent work[10], they used their method in two similar
approaches to find the GM of a number of LJ clusters. In the
first one, they used a variety of switching functionsgstd in-
terpolating between 0 and 1 and asVi they used a pairwise
sum of harmonic termsVsr ijd=sr ij −21/6sd2/2. In the second
one, they introduced a parametera instead of the function
gstd and they employed a conjugate gradient minimization
for that parameter. For that second approachVi was taken to
bebo j=1

N srW j −rW j
0d2, with rW j

0 being the initial position of thej th
atom.

In this work, the idea of using a time dependent potential,
which switches adiabatically from the potentialVi to the po-
tentialVf, to find the GM is examined in detail. Even though
it was claimed in the two previous works that the method
succeeds in predicting the GM of the investigated systems
[9,10], it is clearly shown here that there are cases where the
minimum found within this method is not the GM. This is
because the transformation ofVi to Vf does not ensure that
the GM of Vi will be transformed to the GM ofVf. An
improvement of the HR method is also proposed based on a
proper choice of the switching function. This improvement is
applied to three different cases of realistic model potentials
for which the original HR method fails.

II. APPLICATION TO A SIMPLIFIED ONE-DIMENSIONAL
MODEL POTENTIAL

In this section the HR is applied to a simple one-
dimensional(1D) hypothetical potential. This potential has
the general form

Vsxd = ax4 − bx2 + cx, a . 0. s3d

Because of its simplicity this hypothetical potential is easy to
manipulate and convenient to understand how the HR
method is applied to a realistic model potential.

Under certain conditions fora, b, and c, this potential
exhibits two minima and a local maximum(Fig. 1). If c=0
andb.0 thenVsxd exhibits two minima atx= ±Îb/2a. Both
of these minima are global minima and their value isVmin
=Vs±Îb/2ad=−b2/4a. The local maximum is located atx
=0 and its value isVl.max=0. If c.0, the negative-x mini-
mum of Vsxd for c=0 becomes the GM and ifc,0, the
positive-x minimum of Vsxd for c=0 becomes the GM. Let
us now suppose that the GM of the potentialVisxd=ax4

−bx2+cx, with c.0, is known and the GM of the potential
Vfsxd=ax4−bx2−cx is to be determined with the HR method.
As one can seeVis−xd=Vfsxd. Thus, if Vi exhibits its GM at
x2 and its LM atx3, Vf will exhibit its GM at −x2 and its LM
at −x3 (Fig. 1). In the same way, ifVi exhibits a local maxi-
mum atx1, Vf will exhibit it at −x1.

According to the HR method, the time dependent poten-
tial according to Eq.(2) has the form

Vsx;td = ax4 − bx2 + cxf2gstd − 1g. s4d

The minima and maxima are determined by setting the first
derivative of the polynomial with respect tox equal to zero,
i.e.,
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4ax3 − 2bx+ cs2gstd − 1d = 0. s5d

This is a third order polynomial equation and in case the
three roots are real it can be analytically solved using the
trigonometric identity

− 4 sin3f + 3 sinf = sin 3f. s6d

The solutions are

x1 = 2Î b

6a
sinf,

x2,3= −Î b

6a
ssinf ± Î3 cosfd, s7d

where

sin 3f =
c

8a
S6a

b
D3/2

f2gstd − 1g. s8d

These solutions are functions of time. For the sake of
simplicity we may choosef such thatx2,x1,x3 or x3
,x1,x2. This would restrictf for the first case in the range
of f−p /6 ,p /6g and for the second case in the range offp
−p /6 ,p+p /6g. This restriction does not affect the general-
ity but just setsx1 to be the position of the local maximum of
Vsx; td, while x2 and x3 are then the positions of the two
corresponding minima. Thus, the functionsV2std=Vsx2; td
andV3std=Vsx3; td represent the trajectory in time of the po-
tential minima. Accordingly, the functionV1std=Vsx1; td rep-
resents the trajectory of the local maximum. Their expres-
sions are

V1std =
2b2

3a
sin2f cos 2f,

V2,3std = −
b2

2Î3a
F2 cosS2f 7

p

6
D − cosS4f ±

p

6
DG + V1std.

s9d

These three functions are plotted in Fig. 2 for the values of
a=2, b=3, andc=1. As forgstd, we used the same function
as Hunjan and Ramaswamy in Ref.[9], i.e., gstd
=e−ztcos2s3pztd. SinceVsx; t=0d=Visxd, the GM ofVsx; td at
t=0 is the same as the GM ofVisxd. Similarly, Vsx; t→`d
=Vfsxd so the GM ofVsx; t→`d is the same as the GM of
Vfsxd. As can be seen from Eq.(9), the functionV2std [which
represents the GM trajectory ofVisxd] evolves in time, initi-
ating with a value equal to the value of the GM ofVisxd, then
oscillates due to the cos2 factor of gstd, and finally, ast
→`, it reaches the value of the second(i.e., the local) mini-
mum of Vfsxd (see Fig. 2). On the other hand, the function
V3std [which represents the LM trajectory ofVisxd], also os-
cillates in time and starting from the LM ofVisxd it finally
reaches the GM ofVfsxd (see Fig. 2). Thus, through this
simple example, it is clear that the final GM is reached
through the time evolution of the initial LM, while at the
same time the initial GM fails to reach the correct GM, after
being trapped in the final LM.

It is worth noticing that the functionV1std is always
higher than the trajectories of the two minima, setting a bar-
rier between the two minima ofVsx,td. This barrier does not
allow the trajectories of the two minima to “communicate”
with each other in time within a MD simulation. In a real
adiabatic transformation ofVi to Vf (i.e., a slow evolution of
Vi to Vf compared to the time scale of a MD simulation), the
kinetic energy remains close to zero, so that the total energy
is almost equal to the potential energy. This explains the
trapping of the GM trajectory to the final LM.

However, if the transformation ofVi to Vf is not slow
enough, then the kinetic energy may become large enough to

FIG. 1. FunctionVsxd=ax4−bx2+cx with a=2, b=3. Solid line,
c=1; dotted line,c=0; dashed line,c=−1. c=1 corresponds to the
initial potentialVisxd, while c=−1 corresponds to the final potential
Vfsxd.

FIG. 2. The trajectories in time for the maximum(dotted line),
initial GM (dashed line), and initial LM (solid line) of Vsx; td
=ax4−bx2+cxf2gstd−1g. a=2, b=3, c=1, and gstd
=e−ztcos2s3pztd with z=0.4.
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overpass the existing barrier. In that case, the cluster will
jump to the trajectory of the other minimum, leading to the
GM. Thus, the GM will be reached but only accidentally.

For higher dimension potentials, the same results can be
obtained. As an example one can see the 2D potential

Vsx,yd = asx4 + y4d + bsx2 + y2d + csx + yd. s10d

This potential is of the same type as the 1D potentials used
and it is also easy to manipulate theoretically. Following the
same steps as in the 1D case, it can be easily shown that
there is always a barrier between the trajectories of the initial
and the final GM of the time dependent potential of Eq.(2),
set by the trajectory of one of the saddle points. These tra-
jectories are presented in Fig. 3.

From the above it becomes evident that the HR method is
quite safe in cases where the GMs ofVi and Vf follow the
same trajectory in time. However, in cases where these tra-
jectories split, then the final outcome is by no means safe, as
it may well lead to a LM instead of the GM. Next, the latter
case is examined. The proposed idea is to overcome the bar-
rier between the two minima ofVsx; td, giving the possibility
to a cluster to jump to the other minimum and finally reach
the GM. Let us see how this works.

Let us define the quantityDV as the difference between
the maximum and the LM ofVsx; td. This quantity equals the
height of the barrier which needs to be overcome and reads
[Eq. (9)]

DV = V1std − V2,3std =
b2

2Î3a
F2 cosS2f 7

p

6
D

− cosS4f ±
p

6
DG . s11d

The minimum ofDV is obtained by setting the first deriva-
tive equal to zero, i.e.,

sinS2f 7
p

6
D = sinS4f ±

p

6
D , s12d

recalling that −p /6,f,p /6 or p−p /6,f,p+p /6. The
accepted solutions aref= ±p /6 or f=p±p /6, for which
DV equals zero(i.e., the barrier is eliminated). Then from Eq.
(8) it is seen that the condition forDV=0 is reached when

c

8a
S6a

b
D3/2

f2gstd − 1g = ± 1. s13d

This is possible if either the potential parametersa,b,c per-
mit that and/or a proper selection of the functiongstd has
been made. In the discussed example shown in Figs. 1 and 2,
neither the potential parameters nor the functiongstd satisfy
Eq. (13). As one can see, for the values ofa=2, b=3, and
c=1, the quantitysc/8ads6a/bd3/2 equals 0.5. As the function
gstd interpolates between 1 and 0 and its values lie within the
interval [0,1], the left side quantity of Eq.(13) will never
cross the intevalf−0.5,0.5g, unlessgstd is allowed to reach
larger values such thatu2gstd−1u.2.

With the choice ofgstd=e−ztcos2s3pztds1−td , gstd still in-
terpolates between 0 and 1 but its value extends out of the
interval [0,1]. Then, the existing barrier in our example is
eliminated for some time intervals. For these time intervals,
the minimum that corresponds to the trajectory of the initial
GM [which leads to the LM ofVfsxd] and the local maxi-
mum are both eliminated and only the minimum that corre-
sponds to the trajectory of the initial LM(which leads to the
GM) survives. Another way to realize this is to notice that
with the new choice ofgstd, Eq. (5) has only one real and
two complex roots for some time intervals. Thus, for these
time intervals, the time dependent potentialVsxd has only
one minimum. This minimum is evolved in time and finally
it reaches the GM ofVfsxd. The corresponding functions
V1std , V2std, andV3std for the case of the new choice ofgstd
are shown in Fig. 4.

FIG. 3. Same as in Fig. 2 for the 2D case. FIG. 4. Same as in Fig. 2 but forgstd=e−ztcos2s3pztds1−td.
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It is important to notice that a condition like Eq.(13) is
not always known for a realistic potential. Thus, it becomes
rather difficult to know if a choice of a switching function is
a proper one. Moreover, the rule of overpassing the interval
of [0, 1] for thegstd values may serve as a guiding light, but
by no means should be blindly trusted. As an example, the
reader may test the switching functiongstd=e−ztcos2s3pztd
3s1+2td. With this choice ofgstd, the trajectory of the GM
is the one that is eliminated together with the trajectory of
the local maximum. This can be seen in Fig. 5 where the
corresponding functionsV1std , V2std, and V3std are pre-
sented. In this case, even if the initial configuration corre-
sponds to the LM ofVisxd [which with the first and the
second choices ofgstd would lead to the GM], finally the
cluster will be trapped by the trajectory which leads to the
LM of Vfsxd. Thus, with this choice ofgstd, the HR method
cannot reach the GM with any choice of the initial configu-
ration.

From the above, it is quite clear that the HR is not a safe
method for determining the GM but it can be improved by a
proper choice of the switching functiongstd. Actually, it
seems that there is not a safe procedure for the choice ofgstd,
but rather an inspired trial and error method. Toward the goal
of a proper choice, the rule suggested in this paper of allow-
ing the values of a switching function outside the HR pro-
posed interval[0,1] seems to serve better. This will become
evident in the next section where three realistic examples of
GM determination are given.

III. APPLICATION OF THE METHOD TO MODEL
POTENTIALS FOR REALISTIC PROBLEMS

Hunjan and Ramaswamy[9] have shown that their
method works using asVi the LJ potential and asVf the SC
potential, the form of which can be found in Refs[9,10,21].
According to Ref.[9], their results on the switching from the
minimum of the LJN system to the minimum of the SCN
system of the 6-9 family agree with the results which are

tabulated in the Cambridge Cluster Database[22]. Espe-
cially, the initial 15-atom LJ ground state withC2v symmetry,
is transformed to the SC ground state withD6d symmetry.
They also found that ifgstd=0, then the cluster reaches the
nearest available minimum, which is not the SC GM.

These results were tested with the HR method but with a
slightly different MD approach, in which the equations of
motion do not include any damping term. Instead, the veloc-
ity is lowered by 1% at each time step, which is equal to 0.1
ns. For convenience, we shall call this lowering factor the
damping factor. A fifth order Gear predictor-corrector algo-
rithm [23] was applied to solve the Newtonian equations of
motion and after some thousands of time steps the equilib-
rium was reached. It was found that the GM could not be
reached either by using the switching functiongstd or not.
Both ways reached a local minimum with energyE
=−51.250 909 eV. Nevertheless, in the case where the damp-
ing factor was lowered to 0.1%, both ways reached the GM,
with energy E=−51.323 094 eV[22]. In both cases the
switching function was the one proposed by Hunjan and Ra-
maswamy in Ref.[9].

As one can see the MD method is sensitive to the damp-
ing factor. Of course, for adiabatic switching, the damping
factor should not be small, because the kinetic energy may
contribute substantially to the total energy and(as already
discussed in Sec. I) may overpass the barriers of the trajec-
tory of the initial GM to reach a LM. On the other hand, if
the damping factor is very low, the MD becomes very time
consuming and thus inadequate for the GM search. For the
following studies a damping factor 1% was found satisfac-
tory for both the GM search and time consuming consider-
ations.

Next, the HR method, optimized by the suggestion pre-
sented in Sec. II is applied in three different cases. In the first
one, starting from the ground state of the LJ Ni8 cluster, the
ground state of the Ni8 Morse cluster is found. In the second
case, starting from the ground state of the SC[21] Ni8 clus-
ter, the ground state of the Uppenbrink-Wales(UW) Ni8
cluster is found. Finally, in the third case, starting from the
ground state of the Ni13 SC cluster, the ground state of the
UW Ni13 cluster is found.

The form of the UW potential can be found in Ref.[24].
Uppenbrink and Wales have proposed two set of parameters
for this potential. For Ni, the first set of parameters ise
=1.136 eV,s=2.225 Å, andZ!=0.393, and the second is
e=0.613 eV,s=2.508 Å, andZ!=−0.059. The first set of
parameters was used for the Ni13 case, while the second for
the case of Ni8. Also the form of the Morse potential, fitted
for Ni, can be found in Ref.[25].

The choice of these three cases was made because each
pair of initial sVid and finalsVfd potentials exhibits different
ground state geometries. In Table I is shown the point group
symmetry associated with the ground state geometry of the
8- and 13-atom Ni clusters for the LJ, Morse, SC, and UW
potentials. The configuration of the ground state of the Ni13
UW cluster is shown in Fig. 6. It is expected that due to their
geometrical differences, the two minima of each case are not
connected with the same trajectory. Thus, switching func-
tions gstd, like those proposed in Refs.[9,10], may not be
proper for the switching, as shown in Sec. I.

FIG. 5. Same as in Fig. 2 but forgstd=e−ztcos2s3pztds1+2td.
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For the first two cases, if the damping factor in the MD
simulation equals 0.1%, the GM is reached, independently of
using or not a switching function. But if the damping factor
is raised to 1% the GM is not reached. For the third case the
GM is not reached even if the damping factor becomes
0.01%.

As switching functions for this investigation we used the
function gstd=e−ztcos2s3pztd with z=0.4, as proposed in
Ref. [9], and the functions proposed in Table I of Ref.[10];
namely, e−zt , 1−sinspzt /2Td , 1−zt /T, and f1−tanhszt
−10dg /2. All these switching functions lie only within the[0,
1] interval. For the three cases of investigation and with a
damping factor of 1%, the GM cannot be reached with the
use of these switching functions, as already mentioned.

However, as will be shown below, the HR method can be
optimized, leading to correct findings, if a proper choice of
switching function is made. In particular, the family of func-
tions

gstd = e−ztcos2s3pztds1 − lztd, s14d

with the free parametersz andl, interpolate between 1 and 0
but their values overpass the[0, 1] interval. Using this family
of functions as switching functions, for the values ofz=4,
0.4, 0.04, 0.004 and for integer values ofl, an attempt was
made to find the GM of the clusters for the three cases al-
ready described. The findings are presented in Figs. 7, 8, and
9.

As one can see for the value ofl=0, which corresponds
to the functiongstd=e−ztcos2s3pztd presented by Hunjan and
Ramaswamy[9], the method reaches the nearest available
minimum, which is not the GM. For the first, the second, and
the third cases, the minima reached had energyE
=−8.733 04 eV, −12.579 169 eV, and −25.186 353 eV, re-
spectively, while their GMs have energyE=−8.877 03 eV,
−13.192 970 eV, and −25.964 138 eV, respectively.

The switching functionsgstd with their values ofl close
to 0 give the same minimum as thel=0 switching functions.
For values ofl different from these, many different minima
arise from this method, which also include the GM. Thus this
method is also applicable when the various local minima of a
potential are studied. Especially for the third case, of Ni13
with z=4, 82 different minima were found with minimum
energy distance equal to 2.25310−4 eV. The number of
minima found as a function of their energy is presented as a
histogram in Fig. 10. Forl larger or lower than certain val-
ues, a cluster fragmentation takes place. For these values
there are no minima presented in Figs. 7, 8, and 9.

TABLE I. Point group symmetries of the Ni8 and Ni13 clusters
for the potentials used.

LJ Morse SC UW

Ni8 C2v D2d D2d C2v

Ni13 Ih C2v
a

aThe configuration of the ground state of the Ni13 UW cluster is
shown in Fig. 6.

FIG. 6. The configuration of the GM for the Uppenbrink-Wales
Ni13 cluster.

FIG. 7. The energies of the Ni8 Morse minima found for the
various values ofl switching from the LJ potential.

FIG. 8. The energies of the Ni8 UW minima found for various
values ofl switching from the SC potential.
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From the above study, it becomes more than evident that
the HR method, under the proposed improvement related to
the choice of the switching function, may become a conve-
nient tool in treating realistic problems in GM determination.
Without this improvement it is not safe to be used.

IV. SUMMARY AND CONCLUSION

To summarize, the applicability of the HR method, in the
determination of the lowest energy configuration of an
N-atom cluster, as proposed in Refs.[9,10], was examined in
detail. Using a simple 1D hypothetical potential it was
shown that the HR method may well lead to incorrect results,
raising questions about the safe applicability of the method

in realistic problems. An improvement of the method was
proposed, based on allowing the switching function in use to
take values outside the[0,1] interval originally proposed by
Hunjan and Ramaswamy. The success of this improvement is
depicted in three different realistic examples, for which the
original HR method fails. However, this improvement needs
further investigation for more complicated cases, for which
the choice of a proper switching function may not be an easy
task.
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