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Hunjan and Ramaswamy presentdat. J. Mol. Sci. 3, 30 (2002; Phys. Rev. E66, 046704(2002] a
method for global optimization, according to which the global minimum of a pote¥itialn be found, if a
potential V; (with a known global minimumis transformed adiabatically in time 1@, with the use of a
switching function of timeg(t), which interpolates between 0 and 1, and lies in[thé] interval. In the present
work, the method is examined in detail. With the use of a very simple one-dimensional hypothetical potential,
it is shown that the potential transformation may not always be followed by a global minimum transformation,
which indicates that the method may not always be safely applied in determining the global minimum. An
attempt to improve the method is made by allowing the switching fungjiono take values outside tj8,1]
interval. This improved method is shown to succeed in three different realistic problems, for which the original

method fails.
DOI: 10.1103/PhysReVvE.70.066704 PACS nun$)er02.60.Pn, 02.70.Ns, 36.40c
[. INTRODUCTION sin hopping[2—4)], stochastic approximation with smoothing

o ] ] [12,13, Hunjan-RamaswamyHR) method [9,10], etc)

The determination of the lowest energy configuration ofwhich combine aspects from the three former classes of
anN-atom cluster is an old but still open problem. Although methods. This paper is primarily focused on the applicability
several methods have been proposed for global optimizatiosf the HR method. However, a short reference to the existing
(GO (see, for example, Ref§l-13), a general method un- methods will follow for completeness purposes.
ambiguously determining the global minimu@M) is still Given a good starting point, the gradient-based methods
far from reach. The only way to ensure a GM of a potentialfind the GM quite rapidly, either using molecular dynamics
energy surfac€éPES is the complete knowledge of the PES. (Newton's method or following the PES gradient at the
In most cases, this implies an extensive search over all thetarting point(steepest descent or conjugate gradiehima-
configuration space of the cluster, which is feasible only forjor disadvantage of these methods is the choice of the start-
small clusters. However, it becomes increasingly harder foing point, which may lead to a trapping of the solution in the
larger ones. Actually, the number of minima rises exponencloser LM, failing to reach the GM. _
tialy with the number of the cluster atonji$4,15 [for ex- Stochastic methodgespecially the simulated annealing
ample, the PES of the Lennard-Jorigs) 55-atom cluster, method[1]) have the d!sadvantagg that they often require a
excluding permutational isomers, has at least¥inima  12r9e amount of CPU time to obtain an acceptable degree of
[4]]. Thus, there is always a doubt about the GM determina[e“ab'“ty for their results. The simulated annealing algo-

tion of a GO method. In most cases, especially for larg ithm is one of the earliest proposed methods for GO and
: : ecame quite popular. Nowadays it is not as popular as it

rluwst?ﬁ,ir:::re]: I%V\?es}t mrllglmum Is accepted as the GM until fvas earlier due to its computational expense and inability to
0 Geo thud Sh ou b. ved i der t id thi escape from trapping at low temperatures.

- Mehods have been evolved In order 1o avold IS pejataq to the simulated annealing method, is a combina-
laborious extensive search, confining it to areas of the clustey .- method. the so-called “basin hopping” method, first
configuration space where the GM is likely to be found'in'[roduced by Li and Scherag@] and further improved by
However, they still hg\{e the dlsadvgntgge thaf[ they could by e and Doy43,18]. This method has gained interest due
trapped in a local minimuniLM). This is a major problem 15 ¢\ ccess in predicting the correct GM structure for noni-

for all dthese methodshand ste)lv eral t$chniques|ha\;1e been sUg5sahedral LJ clusters and especially the 38- and 75-atom LJ
gested to overcome the problesee, for example, the Jump- . sters. To date, basin hopping seems to be the most effi-

wa_lking metrr:oql_ﬁ] c|>r thg taboo ls_,earch megh@]:ﬂ] applied  cient GO method for LJ clusters containing up to 100-150
to Iéngr?r:/:trtloz:l::nauna:)i ?;;;2;23 m?(;mf(z)ur categof@s: atoms. Its results are comparable only to the so-called “ge-
. , ' . netic algorithm” method. The main disadvantage of the
0 oo ESCenb ot i a1 ime consuming due (o he g e
; T ) of local minimizations required.
T bt i, Evoluonayorgentc algrims provid  iferen:
. . . ’ proach to the GO problerf6—8]. These algorithms try to
tance scaling metho®], and(d) combinatorial methodga- mimic some aspects of biological evolution and, as men-

tioned earlier, their success is comparable to the basin hop-
ping results. According to a genetic algorithm, an initial
*Electronic address: fthenak@iesl.forth.gr population of cluster geometries is randomly constructed.
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From this population, the structures with low energy are sesubsequent workl0], they used their method in two similar
lected for “reproduction.” In the reproduction phase, newapproaches to find the GM of a number of LJ clusters. In the
clusters are derived via recombination and mutation and é&rst one, they used a variety of switching functiag($) in-
new cluster “generation” is produced. Repeating this iteraterpolating between 0 and 1 and ¥dsthey used a pairwise
tion scheme until it converges, it derives the GM, which cansum of harmonic term¥/(r;) =(r;; - 2/%0)?/2. In the second
be further locally optimized for a more accurate result. one, they introduced a parameterinstead of the function

Finally the category of potential deformation methodsg(t) and they employed a conjugate gradient minimization
provides a different approach to the GO problem. Withinfor that parameter. For that second appro¥ctvas taken to
these methods a transformation is applied to the PES WhiCbe,BEJN:l(Fj _F?)Z, with r? being the initial position of th¢th
smooths it out, thus reducing the number of its minima andiom.

making the search for the GM easier. The GM of the de- |n this work, the idea of using a time dependent potential,
formed PES is then mapped back with the reverse transfogyhich switches adiabatically from the potenti4lto the po-
mation, in the expectation that it will lead to the GM of the tential V;, to find the GM is examined in detail. Even though
original PES. Nevertheless, it is not guaranteed that the GMt was claimed in the two previous works that the method
of the deformed PES will be mapped back to the GM of thesycceeds in predicting the GM of the investigated systems
original PES[19,2Q. [9,10, it is clearly shown here that there are cases where the
From the above, it becomes clear that to date no methoghinimum found within this method is not the GM. This is
can safely determine the GM but rather they could be used asecause the transformation f to V; does not ensure that
complementary to each other. The interest in this work ishe GM of V; will be transformed to the GM o¥/;. An
focused on the HR method and its safe applicability. ~ jmprovement of the HR method is also proposed based on a
The HR method9,10] is categorized as a combinatorial proper choice of the switching function. This improvement is

method. It is a combination of a potential deformation applied to three different cases of realistic model potentials
method with molecular dynamics. The difference betweerfor which the original HR method fails.

the HR and the other potential deformation methods is that
the PES is not smoothed to a PES with fewer minima. In-

stead, a PES with a known GM is mapped to the original”' APPLICATION TO A SIMPLIFIED ONE-DIMENSIONAL
PES. MODEL POTENTIAL

To find the GM, Hunjan and Ramaswamy simply used |, this section the HR is applied to a simple one-

molecular dynamicgMD) including damping forces acting gimensjonal(1D) hypothetical potential. This potential has
on the atoms of the clusters; namely, they solve the followingy,q general form

equations of motion:

. V(x)=ax*-bx+cx, a>0. (3)
mr+4y==-VV, i=1,2,...,N, (1)
Because of its simplicity this hypothetical potential is easy to
manipulate and convenient to understand how the HR
method is applied to a realistic model potential.

wherem is the mass of each atom of the clusterjs the
damping factorf; is the position vector for thigh atom, and
V is the potential for théN-atom cluster. A%/ they introduce Under certain conditions foa, b, and c, this potential

a time dependgnt pote_ntial which is a combination of tWOgayhibits two minima and a local maximu(ﬁig._lLlf c=0

different potentials, having the form andb>0 thenV(x) exhibits two minima ak=+\b/2a. Both

—\/. _ of these minima are global minima and their valueVijg,

VIO =ViDg(®) + Vi(P[L ~g(0], @ =V(+\b/2a)=-b?/4a. The local maximum is located at

where g(t) is an adiabatically varying switching function =0 and its value 8V, h,=0. If ¢>0, the negative¢ mini-

ranging between 1 and [@(t=0)=1,g(t—~)=0]. That is, mum of V(x) for c=0 becomes the GM and <0, the
V(t=0)=V, and V(t—«)=V;. Hence, the PES evolves in positivex minimum of V(x) for c=0 becomes the GM. Let

time in such a way that the initial potentid] is transformed us now suppose that the GM of the potentig(x)=ax*
adiabatically into the final potential of intereg¢t. The MD  —bx?+cx, with ¢>0, is known and the GM of the potential
simulation uses the GM configuration of the initial potential V,(x) =ax*—bx?-cx s to be determined with the HR method.

V; and the time dependent potential already described. UndeXs one can se¥;(-x)=V;(x). Thus, ifV; exhibits its GM at

these conditions, it is expected that the cluster will follow ax, and its LM atxz, V; will exhibit its GM at —x, and its LM

trajectory in the time dependent configuration space, veryt —x; (Fig. 1). In the same way, i¥/; exhibits a local maxi-
close to the trajectory that the GM of the time dependenimum atx,, V; will exhibit it at —x;.

potential would have followed. According to the HR method,  According to the HR method, the time dependent poten-

when the time dependent potential becomes equal to the fingh| according to Eq(2) has the form

potential(with no time dependence any mpthe GM of the

final potentialV; is reached. V(x;t) =axt - bx® + e 2g(t) - 1]. (4)
Hunjan and Ramaswamy, in their first wai®], used this

method to find the GM configuration of clusters described byThe minima and maxima are determined by setting the first

the Sutton-CherSC) [21] potential, starting from the GM derivative of the polynomial with respect toequal to zero,

configuration of the Lennard-Jones associated clusters. Inig.,
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FIG. 1. FunctionV(x) =ax*—bx?+cxwith a=2, b=3. Solid line,
c=1; dotted line,c=0; dashed linec=-1.c=1 corresponds to the
initial potential V;(x), while c=-1 corresponds to the final potential

FIG. 2. The trajectories in time for the maximuiotted ling,
initial GM (dashed ling and initial LM (solid line) of V(x;t)

Vi(X) =ax*-bx?+cx{2g(t) - 1]. a=2, b=3, c=1, and g(t)
e =e {tco(3w¢t) with £=0.4.
4axd - 2bx+ c(2g(t) — 1) = 0. (5 b2 - -
. . . . . V23(t)=——r[2 co<2¢1 —)—cos<4¢i—>} +Vi(1).
This is a third order polynomial equation and in case the ~ 2\3a 6 6

three roots are real it can be analytically solved using the 9)
trigonometric identity
These three functions are plotted in Fig. 2 for the values of
—~ 4 sirf¢ + 3 sing = sin 3. (6)  a=2, b=3, andc=1. As forg(t), we used the same function
as Hunjan and Ramaswamy in Ref9], i.e., g(t)
=g “cog(3mt). SinceV(x;t=0)=V;(x), the GM of V(x;t) at

b t=0 is the same as the GM &f;(x). Similarly, V(x;t— =)
x1=2\/alsin¢,

The solutions are

=Vi(x) so the GM ofV(x;t— x) is the same as the GM of
V¢(x). As can be seen from E), the functionV,(t) [which
represents the GM trajectory ®(x)] evolves in time, initi-
b - ating with a value equal to the value of the GM\4tx), then
X2,3=~ &(S'”‘ﬁi V3 cosg), (7)) oscillates due to the cddactor of g(t), and finally, ast
— oo, it reaches the value of the secof., the local mini-
where mum of V¢(x) (see Fig. 2 On the other hand, the function
V5(t) [which represents the LM trajectory ®(x)], also os-
cillates in time and starting from the LM of;(x) it finally
reaches the GM oW;(x) (see Fig. 2 Thus, through this
imple example, it is clear that the final GM is reached
hrough the time evolution of the initial LM, while at the
same time the initial GM fails to reach the correct GM, after

. c (6a\%?
sin 3¢ 8a( b ) [29(t) - 1]. (8)
These solutions are functions of time. For the sake o
simplicity we may choosep such thatx,<x;<x3 Or X3
<x;<X,. This would restrictp for the first case in the range being trapped in the final LM.
of [-7/6,7/6] and for the second case in the range of It is worth noticing that the functiorV,(t) is always
—m/6,m+m/6]. This restriction does not affect the general- higher than the trajectories of the two minima, setting a bar-
ity but just sets, to be the position of the local maximum of ier hetween the two minima &f(x, t). This barrier does not
V(x;1), while x, and x; are then the positions of the tWo 410\ the trajectories of the two minima to “communicate”
corresponding minima. Thus, the functioNs(t)=V(x;;t)  wijth each other in time within a MD simulation. In a real
andVs(t)=V(xg;t) represent the trajectory in time of the po- adiabatic transformation of; to V; (i.e., a slow evolution of
tential minima. Accordingly, the functioly(t) =V(x;;t) rep- v to V; compared to the time scale of a MD simulatjothe
resents the trajectory of the local maximum. Their expreskinetic energy remains close to zero, so that the total energy
sions are is almost equal to the potential energy. This explains the
) trapping of the GM trajectory to the final LM.
Vy(t) = &Sinng cos 2 However, if the transformation o¥; to V; is not slow
1 - ’ . .
3a enough, then the kinetic energy may become large enough to
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FIG. 3. Same as in Fig. 2 for the 2D case. FIG. 4. Same as in Fig. 2 but fg(t)=e “cog(37{t)(1-t).

overpass the existing barrier. In that case, the cluster will ] o ] T
jump to the trajectory of the other minimum, leading to the sin| 2¢ + /7SN 4+ 5) (12
GM. Thus, the GM will be reached but only accidentally.

For higher dimension potentials, the same results can be
obtained. As an example one can see the 2D potential ~ 'ecalling that m/6<¢<m/6 orm—m/6<p<m+m/6. The
accepted solutions aré¢==x7/6 or ¢=mx /6, for which

. AV equals zerai.e., the barrier is eliminatedThen from Eq.
V(xy) = a(x* +yh) + b +y?) +c(x +y). (10)  (8)itis seen that the condition faxV=0 is reached when

and it is also easy to manipulate theoretically. Following the 8a
same steps as in the 1D case, it can be easily shown that

there is always a barrier between the trajectories of the initi
and the final GM of the time dependent potential of E),

This potential is of the same type as the 1D potentials used c (6a\%?
+) [20-1)=£1. (13)

a'Il'his is possible if either the potential parametarb, c per-

set by the trajectory of one of the saddle points. These trgMit that and/or a proper selection of the fun_cng_(t) has
jectories are presented in Fig. 3. be_en made. In the_ discussed example shown in Flgs._ land?2,
From the above it becomes evident that the HR method i§€ither the potential parameters nor the functon satisfy
quite safe in cases where the GMs\gfand V; follow the ~ Ed: (13). As one can see, for/the values a2, b=3, and
same trajectory in time. However, in cases where these tr&:= 1, the quantity(c/8a)(6a/b)** equals 0.5. As the function
jectories split, then the final outcome is by no means safe, a3(t) interpolates between 1 and 0 and its values lie within the
it may well lead to a LM instead of the GM. Next, the latter interval [0,1], the left side quantity of Eq(13) will never
case is examined. The proposed idea is to overcome the b&toss the inteval-0.5,0.9, unlessg(t) is allowed to reach
rier between the two minima &f(x;t), giving the possibility  larger values such thagg(t)—1|> 2.
to a cluster to jump to the other minimum and finally reach ~ With the choice ofy(t) =e¢'cos(3¢t)(1-1), g(t) still in-
the GM. Let us see how this works. terpolates between 0 and 1 but its value extends out of the
Let us define the quantitaV as the difference between interval [0,1]. Then, the existing barrier in our example is
the maximum and the LM o¥(x;t). This quantity equals the eliminated for some time intervals. For these time intervals,

height of the barrier which needs to be overcome and read$§e minimum that corresponds to the trajectory of the initial
[Eq. (9)] GM [which leads to the LM of¢(x)] and the local maxi-

mum are both eliminated and only the minimum that corre-
b2 sponds to the trajectory of the initial Livhich leads to the
AV=Vy(t) = Vo 4(t) = —_{2 cos<2¢ T f) GM) survives. Another way to realize this is to notice that
’ 2v3a with the new choice ofy(t), Eq. (5) has only one real and
. two complex roots for some time intervals. Thus, for these
—cos<4¢i —)} (11)  time intervals, the time dependent potentiék) has only
6 one minimum. This minimum is evolved in time and finally
it reaches the GM ofV¢(x). The corresponding functions
The minimum ofAV is obtained by setting the first deriva- V,(t), V,(t), andV;(t) for the case of the new choice gft)
tive equal to zero, i.e., are shown in Fig. 4.
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1 ‘ ‘ ‘ tabulated in the Cambridge Cluster Datab&282]. Espe-
. cially, the initial 15-atom LJ ground state wi@y, symmetry,
L \," \1’\/__ is transformed to the SC ground state willg; symmetry.

| They also found that ify(t)=0, then the cluster reaches the
RYRVA nearest available minimum, which is not the SC GM.

Yy W 1 These results were tested with the HR method but with a
\\ /\\ / slightly different MD approach, in which the equations of
WA motion do not include any damping term. Instead, the veloc-
| ity is lowered by 1% at each time step, which is equal to 0.1
ns. For convenience, we shall call this lowering factor the
damping factor. A fifth order Gear predictor-corrector algo-
rithm [23] was applied to solve the Newtonian equations of
motion and after some thousands of time steps the equilib-
41 1 rium was reached. It was found that the GM could not be
reached either by using the switching functigft) or not.
Both ways reached a local minimum with enerdy
2y 2 4 6 8 10 =-51.250 909 eV. Nevertheless, in the case where the damp-

Time ing factor was lowered to 0.1%, both ways reached the GM,
with energy E=-51.323 094 eV[22]. In both cases the
switching function was the one proposed by Hunjan and Ra-
maswamy in Ref[9].

It is important to notice that a condition like E(L3) is As one can see the MD method is sensitive to the damp-
not always known for a realistic potential. Thus, it becomesing factor. Of course, for adiabatic switching, the damping
rather difficult to know if a choice of a switching function is factor should not be small, because the kinetic energy may
a proper one. Moreover, the rule of overpassing the intervatontribute substantially to the total energy afas$ already
of [0, 1] for the g(t) values may serve as a guiding light, but discussed in Sec) Imay overpass the barriers of the trajec-
by no means should be blindly trusted. As an example, théory of the initial GM to reach a LM. On the other hand, if
reader may test the switching functigit)=e 'cog(3w{t)  the damping factor is very low, the MD becomes very time
X (1+2t). With this choice ofg(t), the trajectory of the GM consuming and thus inadequate for the GM search. For the
is the one that is eliminated together with the trajectory offollowing studies a damping factor 1% was found satisfac-
the local maximum. This can be seen in Fig. 5 where thdory for both the GM search and time consuming consider-
corresponding functionsV,(t), V,(t), and V4(t) are pre- ations.
sented. In this case, even if the initial configuration corre- Next, the HR method, optimized by the suggestion pre-
sponds to the LM ofV(x) [which with the first and the sented in Sec. Il is applied in three different cases. In the first
second choices ofi(t) would lead to the GNj finally the  One, starting from the ground state of the L} Wiuster, the
cluster will be trapped by the trajectory which leads to theground state of the NiMorse cluster is found. In the second
LM of Vi(x). Thus, with this choice of(t), the HR method ¢ase, starting from the ground state of the 2] Nig clus-

cannot reach the GM with any choice of the initial configu- €, the ground state of the Uppenbrink-Walgsw) Nig
ration. cluster is found. Finally, in the third case, starting from the

From the above, it is quite clear that the HR is not a safédround state of the Ni SC cluster, the ground state of the

method for determining the GM but it can be improved by aUW Niis cluster is found. _
proper choice of the switching functiog(t). Actually, it The form of the UW potential can be found in R¢24].

seems that there is not a safe procedure for the choigé)of Uppenbrink and Wales have proposed two set of parameters

s : for this potential. For Ni, the first set of parameterseis
but rather an inspired trial and error method. Toward the goal O S i
of a proper choice, the rule suggested in this paper of aIIow-_l'136 eV,0=2.225 A, andZ'=0.393, and the second is

ing the values of a switching function outside the HR pro—ezo'el?t’ eV,a=2.50€(3j '?‘ e;ﬂdz*_:—O.OSS:]._IT?ﬁ first sectj ?f
posed interva[0,1] seems to serve better. This will become parameters was used for the,bicase, while the second for

evident in the next section where three realistic examples o?je Nc_ase ofbl\g.fAIs%the;o]rcrg of the Morse potential, fitted
GM determination are given. or Ni, can be found in Ref{25].

The choice of these three cases was made because each
pair of initial (V;) and final(V;) potentials exhibits different
ground state geometries. In Table | is shown the point group
symmetry associated with the ground state geometry of the
8- and 13-atom Ni clusters for the LJ, Morse, SC, and UW

Hunjan and Ramaswamy9] have shown that their potentials. The configuration of the ground state of thg; Ni
method works using ag; the LJ potential and ag; the SC ~ UW cluster is shown in Fig. 6. It is expected that due to their
potential, the form of which can be found in R¢810,2].  geometrical differences, the two minima of each case are not
According to Ref[9], their results on the switching from the connected with the same trajectory. Thus, switching func-
minimum of the Ly system to the minimum of the {C tions g(t), like those proposed in Ref§d,10], may not be
system of the 6-9 family agree with the results which areproper for the switching, as shown in Sec. .

|
-

max/min of V(x;t)
|

|
w
T

FIG. 5. Same as in Fig. 2 but fot)=e “'co(37{t) (1 +21).

I1l. APPLICATION OF THE METHOD TO MODEL
POTENTIALS FOR REALISTIC PROBLEMS
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TABLE |. Point group symmetries of the pNand Ni; clusters -85 : *
for the potentials used. [P0 e A
LJ Morse SC Uw -89 V\'
-85 T
Nig Co Dag Dag Ca O
Ni a
13 Ih Ca S j_
®The configuration of the ground state of the,NUW cluster is o 85 ‘
shown in Fig. 6. — ¢=04
-8.7 +
For the first two cases, if the damping factor in the MD -89 ; U
simulation equals 0.1%, the GM is reached, independently of -85
using or not a switching function. But if the damping factor o7 &=
is raised to 1% the GM is not reached. For the third case the
GM is not reached even if the damping factor becomes 89, —100 o o 50
0.01%. A

As switching functions for this investigation we used the
function g(t)=e“cog(37{t) with 7=0.4, as proposed in
Ref. [9], and the functions proposed in Table | of REfO];
namely, e, 1-sin(#{t/2T), 1-t/T, and [1-tanh(t As one can see for the value pEO, which corresponds
—-10)]/2. All these switching functions lie only within tH®,  to the functiong(t) =e %'cos(3(t) presented by Hunjan and
1] interval. For the three cases of investigation and with aRamaswamy[9], the method reaches the nearest available
damping factor of 1%, the GM cannot be reached with theminimum, which is not the GM. For the first, the second, and
use of these switching functions, as already mentioned.  the third cases, the minima reached had enefy

However, as will be shown below, the HR method can be=-8.733 04 eV, -12.579 169 eV, and -25.186 353 eV, re-
optimized, leading to correct findings, if a proper choice ofspectively, while their GMs have enerdy=-8.877 03 eV,
switching function is made. In particular, the family of func- -13.192 970 eV, and —25.964 138 eV, respectively.
tions The switching functiong(t) with their values of\ close

- _ to 0 give the same minimum as the=0 switching functions.

g(t) =& Fcos(@net (1AL, (14 For values ofA different from these, many different minima
with the free parametesand)\, interpolate between 1 and O arise from this method, which also include the GM. Thus this
but their values overpass th@, 1] interval. Using this family  method is also applicable when the various local minima of a
of functions as switching functions, for the valuesf4,  potential are studied. Especially for the third case, of;Ni
0.4, 0.04, 0.004 and for integer values)afan attempt was with /=4, 82 different minima were found with minimum
made to find the GM of the clusters for the three cases alenergy distance equal to 2.23.0%eV. The number of
ready described. The findings are presented in Figs. 7, 8, andinima found as a function of their energy is presented as a
9. histogram in Fig. 10. Fok larger or lower than certain val-
ues, a cluster fragmentation takes place. For these values
there are no minima presented in Figs. 7, 8, and 9.

FIG. 7. The energies of the NiMorse minima found for the
various values ol switching from the LJ potential.
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-13.3
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-13.3
-123

MWW
-128

-13.3
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-128 |

-13.3 :
15 -5

5
A
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From the above study, it becomes more than evident thdf "€alistic problems. An improvement of the method was

the HR method, under the proposed improvement related t8"0P0s€d, based on allowing the switching function in use to
the choice of the switching function, may become a convelake values outside th@,1] interval originally proposed by
nient tool in treating realistic problems in GM determination. Hunjan and Ramaswamy. The success of this improvement is
Without this improvement it is not safe to be used. dgp!cted in three dlﬁerent realistic ex_amples, for which the
original HR method fails. However, this improvement needs
further investigation for more complicated cases, for which
the choice of a proper switching function may not be an easy
IV. SUMMARY AND CONCLUSION task.

To summarize, the applicability of the HR method, in the
determination of the lowest energy configuration of an
N-atom cluster, as proposed in Ref@,10], was examined in ACKNOWLEDGMENTS
detail. Using a simple 1D hypothetical potential it was | would like to thank Professor Antonis N. Andriotis and
shown that the HR method may well lead to incorrect resultspr. Manolis Benis for useful discussions and helpful com-
raising questions about the safe applicability of the methodnents on the manuscript.
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