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Pentaheptites and Octagraphene are allotropes of graphene that have been predicted theoretically
although less favorable energetically than graphene. In this work, we use density functional theory
calculations, to study the response of two representative Pentaheptites and Octagraphene upon
uniaxial strain up to the fracture limit. We calculate their mechanical properties like Young’s
modulus, Poison’s ratio and speed of sound. We also determine their ultimate tensile strength and
the corresponding strain, and describe the pathways of their fracture. Finally, we focus on their
relative stability compared to graphene under strain. We find that under uniaxial strain of the order
of 10-12% in certain directions, which we determine, pentaheptites become energetically favorable
than graphene. The energy barriers for the transitions decrease dramatically under strain, however,
they remain prohibitive for structural transitions. Thus, strain alone can not provide a synthetic
route to these allotropes, but could be a part of composite procedures for this purpose.

PACS numbers:

I. INTRODUCTION

The rise of graphene era, which followed its isola-
tion and identification1, has inevitably fueled the in-
terest on alternative two dimensional materials, like
boron nitride2,3, metallic dichalcogenides4, graphene
allotropes5 (i.e. entirely planar three-fold coordinated
Carbon structures), etc. Theoretically, several graphene
allotropes has been predicted to be stable6–10. A class of
them, known as “haeckelites”6,8–10, can be derived from
graphene upon extensive periodically arranged Stone-
Wales transformations (SWTs)11,1258.

Theoretical investigations on haeckelites started at
middle ’90s by Crespi et al6, who proposed and stud-
ied the electronic properties of a pentaheptite struc-
ture (i.e. a haeckelite built entirely out of pentagonal
and heptagonal carbon rings), finding that it is planar,
metallic and at least as stable as C60. A few years
later, Terrones et al10, who introduced the term “haeck-
elites”, studied the stability and electronic, mechanical
and vibrational properties of three such structures and
their nanotube counterparts10,13. Another haeckelite,
which has received attention recently5,14–19 is the so-
called octagraphene14 (OcGr) or T-graphene15, which is
built entirely of square and octagonal carbon rings. Ap-
parently, there is a whole world of complex planar-sp2

carbon allotropes consisting partially of hexagons and/or
pairs of heptagons-pentagons and/or squares-octagons.
In the last decade, the properties of these (see for in-
stance Refs. 20–22), as well as several other similar
periodic9,23–26, and amorphous27 haeckelite structures,
has been investigated. Haeckelites could have unique and
maybe tailored properties of technological interest. For
instance, they can be either metallic or not23, or they can
be planar or buckled, depending on the arrangement of

the SWTs59.

Despite the theoretical predictions for their stabil-
ity, periodic haeckelite structures have not been syn-
thesized yet. On the other hand, structures based on
SWTs or similar transformations have been observed
and/or synthesized experimentally. Such structures in-
clude graphene with point SW defects28, amorphous
haeckelite structures27,29, haeckelite-like 5-7 or 5-8 line
defects30,31, grain boundaries32, grain boundary loops of
pentagons and heptagons33 and reconstructed graphene
edges of alternating pentagonal and heptagonal carbon
rings34. This fact indicates that periodic haeckelite struc-
tures could be synthesized in the future. It is also worth
to mention the reknitting process35, which spontaneously
takes place in graphene nanoholes, by filling up with non
hexagonal carbon rings.

Among the possible haeckelite synthetic routes6,26, the
direct one, by rotating appropriate C-C bonds of the
graphene lattice, seems to be prohibitive, since there is a
huge energy barrier for this process. According to Crespi
et al6, this barrier is of the order of 7 eV attributed to the
breaking of two C-C bonds along the rotation pathway.
An even higher value of 9.2 eV has also been reported36.
On the other hand, this barrier has been shown theoret-
ically to reduce substantially through catalytic paths in
the presence of external atoms37, using Boron doping38,
or upon strain, as reported by Samsonidze et al39 using
an atomistic model.

Although most of the theoretical studies on haeckelites
focus on their stability and electronic properties, little
has been done on their response to stress7,14,40,41. In
the present work, we attempt to cover this gap. Exper-
imentally, large uniaxial stress, up to the fracture limit,
has been applied to a graphene monolayer42, measuring
its ultimate tensile strength (UTS) and the correspond-
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FIG. 1: Conversion of graphene into PeHe-A ((a)-(c) top) and PeHe-B ((a)-(c) bottom) and their further conversion to OcGr
(d)-(f) through a periodic mesh of SWTs. The green arrows show the strain directions considered in our study: (a) Graphene
and the mesh of rotating bonds in red; (b) 90o rotations have been performed in the otherwise unperturbed graphene lattice;
(c) PeHe-A (top) and PeHe-B (bottom) structures upon energy optimization; (d) PeHe-A and PeHe-B structures, with the
additional rotating bonds (in orange) leading in both cases to OcGr; (e) 90o rotations have been performed in the otherwise
unperturbed PeHe-A and PeHe-B lattices; (f) the final optimized OcGr structures.

ing strain ε = 0.25. Of course, a relevant question is
whether graphene remains energetically more stable than
its planar allotropes in the regime of so large uniaxial de-
formation. In the present, we also attempt to answer this
question.

More specifically, we consider two periodic pentahep-
tite structures, which we call PeHe-A and PeHe-B (see
Fig. 1(c), top and bottom panels, respectively) and OcGr
(Fig. 1(f) top and bottom) and we study their mechani-
cal properties for uniaxial stretching in comparison with
graphene, up to the fracture limits, using ab-initio den-
sity functional theory (DFT) calculations. We plot their
stress-strain curves and calculate their Young’s modu-
lus, Poisson’s ratio, speed of sound, and ultimate stress
- strain limits for different strain directions. Addition-
ally, we examine if strain can be an assisting factor for
their synthesis. For this purpose, we determine the strain
directions that might favor their relative stability (com-
pared with graphene) and check for the existence of cross-
ing points in the curves of the total energies as a function
of strain along these directions. Finally, using a proto-
type molecular system, we estimate the energy barrier
for SWTs as a function of strain.

The present paper is organized as follows: In Sect. II,
we describe the structures we considered and the peri-
odic SWTs that lead to them, as well as our method-
ology. In Sect. III, we present and discuss our results
on the equilibrium and mechanical properties of the al-
lotropes (Sect. III A), their UTS and fracture patterns
(Sect. III B), and finally their relative stability as a func-
tion of uniaxial strain (Sect. III C). The conclusions are
included in Sect. IV.

II. STRUCTURES AND METHOD

In Fig. 1(a)-(c), we show the mechanism of conver-
sion of graphene into PeHe-A and PeHe-B (top and bot-
tom panels, respectively) through periodic arrangements
of SWTs. The bonds in graphene (a) colored in red
have been rotated by 90o in (b) and the relaxed PeHe-
A and PeHe-B structures are shown in (c). We note
that PeHe-B is the pentaheptite structure introduced by
Crespi et al6. Furthermore, in Fig. 1(d)-(f), we show the
conversion mechanism of PeHe-A and PeHe-B (top and
bottom panels, respectively) to OcGr. The rotation by
90o of all the common bonds of adjacent pentagons (col-
ored in orange) in either PeHe-A ((d)(top)) or PeHe-B
((d)(bottom)), lead to the structures in (e) which upon
optimization relax to OcGr in (f). The structures in the
top and bottom panels in (f) are identical but rotated
with respect to each other by 45o.
Due to the symmetry reduction associated with the ar-

rangement of SWTs, the primitive unit cells in PeHe-A,
PeHe-B and OcGr contain 16, 8 and 4 atoms, respec-
tively. For the purposes of the present study, we adopt a
common rectangular 16-atom unit cell, shown with black
lines in Fig. 1.
In order to investigate the response of the structures

under study to strain, we optimize them under constant
strain along certain representative high symmetry direc-
tions. For graphene, PeHe-A and PeHe-B these direc-
tions are defined in terms of fractional coordinates, with
respect to the selected rectangular unit cell vectors: (0,1),
(1,1), (-1,1), (1,0), (1,3) and (-1,3). They are shown in
Fig. 1(a-c) denoted as ez1, ez2, ez3, ea1, ea2, ea3, re-
spectively. For graphene, they correspond to the three
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equivalent directions along zig-zag (ez1, ez2, ez3) and the
three equivalent directions along arm-chair chains (ea1,
ea2, ea3) which we will simply call zig-zag and arm-chair
directions. Occasionally we will use the notation ea, ez
referring to them. However, for PeHe-A and PeHe-B,
only ez1, ez2, ea1 and ea2 are different from each other,
since under the structural transformations x → −x+ cx
and y → y + cy, (for certain constant values of cx and
cy) for PeHe-A, and x → −x for PeHe-B, ez3 and ea3
coincide with ez2 and ea2, respectively. In the present
study, we focus on the effect of strain in the directions
ea1, ez1 and ez2 for PeHe-A and ea1, ez1, ea2 for PeHe-B.
In the case of ez2 and ea2, a non-rectangular unit cell is
adopted, as required in order to keep the same number
of atoms per unit cell. After the conversion of PeHe-A
and PeHe-B to OcGr, shown in Fig. 1 (d)-(f), the direc-
tions ea1 and ez1 become equivalent in both cases. Thus,
to avoid confusion, for OcGr, we adopt the notation ese
(direction along a square edge), and esd (along square
diameter). In the case of PeHe-A conversion, ea1 and ez1
become ese1, ese2, while for PeHe-B they become esd1,
esd2, respectively.
For our calculations, we used the Quantum Espresso43

periodic DFT code at the level of GGA/PBE
functional44. We adopted an ultra-soft pseudopotential45

for C, generated by a modified RRKJ approach46. We
used k-meshes of the order of 6×12 points which were
found sufficient to converge structural properties given
the relatively large size of the adopted unit-cell. We
chose cutoffs 50 and 500 Ryd for the wave functions and
charge density, respectively and occupation smearing of
5 mRyd. Calculations under constant strain were per-
formed by scaling and freezing the corresponding unit-
cell vector while all the rest of the structural parameters,
i.e. atom positions and cell dimensions, were fully opti-
mized.

III. RESULTS AND DISCUSSION

A. Structural and mechanical properties

According to our findings, the optimized PeHe-A and
PeHe-B structures are by 0.22 and 0.24 eV per atom,
respectively, less favorable than graphene. The optimized
OcGr structure is by 0.25 eV per atom higher than PeHe-
B. Based on those energy differences and bearing in mind,
that two SWTs take place per unit cell for the formation
of PeHe-A and PeHe-B, and two more for the formation
of OcGr, the energy cost for a SWT is ≈ 1.8− 2.0 eV.
As seen in Fig. 1(c), the lattice of PeHe-A and PeHe-

B remains rectangular upon optimization. However, the
lattice parameter of PeHe-A in the ea1 direction increases
while that of the ez1 decreases. In the case of PeHe-
B, we have the opposite, i.e. the lattice parameter in-
creases along the ez1 direction and decreases along the
ea1. For PeHe-B, this change in dimensions looks plau-
sible since the structure is enlarged in the direction that

the bonds turn to, as a stress reduction mechanism. For
PeHe-A, a similar mechanism takes place although the
bonds are never parallel to any of the lattice vectors.
Similarly, however, enlargement of the structure occurs
in the direction with the largest projection of the ro-
tated bonds. The magnitude of the lattice vectors for
the rectangular lattice of PeHe-A and PeHe-B, shown in
Fig. 1, are ax = 9.157 Å and ay = 4.749 Å for PeHe-

A, and ax = 7.460 Å and ay = 5.847 Å for PeHe-B,
respectively. The magnitude of the corresponding lat-
tice vectors for graphene is ag,x = 6a0 = 8.531 Å and

ag,y = 2
√
3a0 = 4.925 Å, where a0 = 1.422 Å is the

bond length. For the square lattice of OcGr, the lat-
tice constant a is a = 2(a1 +

√
2a2) = 6.877 Å, where

a1 = 1.370 Å and a2 = 1.462 Å are the bond lengths cor-
responding to the adjacent octagon edges and the square
edges, respectively.
We calculate the response of PeHe-A, PeHe-B and

OcGr as well as graphene for uniaxial stress σ, for strains
ε ranging from -20% up to 30%. As it is customary, to
obtain values relevant for comparison with 3-dimensional
materials42,47 we consider a structure thickness of 3.34 Å
(the interlayer separation distance of graphite).
Obviously, any 2-dimensional (2D) structure under

compression would prefer to bend instead of remaining
flat and negatively strained50. However, it is possible to
perform calculations for negative strains, without struc-
ture bending, in order to estimate, more reliably, quanti-
ties that are expressed as derivatives dA/dε, or as ratios
A/ε, at ε = 0, using least square fitting, rather than ex-
trapolating positive strain results to ε = 0. Such quan-
tities are the Young’s modulus E, (E = σ/ε), and the
Poisson’s ratio ν, (ν = −ε⊥/ε, where ε⊥ is the trans-
verse strain).
In Fig. 2(a), we show the stress-strain curves for all

structures in the range 0 ≤ ε ≤ 0.3. In agreement
with other theoretical47–49,51,52 and experimental42 stud-
ies in graphene, we find a non linear stress-strain relation
not only for graphene, but also for the allotropes of our
study, even for stress less than 5%. For graphene, it has
been proposed42 that this non-linear behavior can be ex-
pressed as σ = Eε+Dε2 (which is equivalent to a linear
dependence of σ/ε on ε), although an even higher or-
der expansion in strain has been considered48. However,
as shown in Fig. S1(c) of the Supplemental Information,
the dependence of σ/ε on ε diverges from linearity for
the strain range we considered and for all structures. We
found more accurate description a fitting to the quadratic
equation

σ/ε = E +Dε+ Fε2, (1)

for 0 < ε / εu, where εu is the strain corresponding to
the UTS. The fitting lines are presented in Fig. 2(a) and
Fig. S1(c) of the Supplemental Information. However, D
and F depend strongly on the range of ε, or the fitting
method, indicating that even a fitting using Eq. (1) can
not provide reliable values forD and F (see Supplemental
Information for more details).
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FIG. 2: (a) Stress - strain curve and (b) Poison’s ratios as a function of strain, for Graphene, PeHe-A, PeHe-B, and OcGr for
different strain directions. The straight, dashed and dot-dashed lines in the stress - strain graph are the fitting lines according
to Eq. (1), (2) for (a) and (b), respectively. The dotted lines in (a) connect the stress - strain points for strain values ε ' εu.

Structure Source/Method Direction E (GPa) ν ρ (gr/cm3) vs (km/sec) εu σu (GPa)
Graphene present work ea 1024 0.177 2.291 21.14 0.185 103

present work ez 1020 0.173 2.291 21.10 0.225 114

LDA [41] ea, ez 1054 0.185 (2.314) (21.34)
LDA [47] ea, ez 1050 0.186 (2.313) (21.30) 0.194 110, 121
GGA/PBE [48] ea, ez 1042 0.169 (2.323) (21.18) 118
GGA/PBE [41] ea, ez 1025 0.173 (2.277) (21.22)
GGA/PW [14] ea, ez 1048 0.17 (2.305) (21.32) 104, 115
Atomistic[49] ea, ez 960 0.22 (2.29) (20.47) 100, 120-130
Exp. [42] 1020± 150 0.25 126± 12

PeHe-A present work ea1 825 0.253 2.213 19.3 0.240 94

present work ez1 860 0.264 2.213 19.7 0.192 88

present work ez2 865 0.255 2.213 19.8 0.169 83

PeHe-B present work ea1 882 0.210 2.207 20.0 0.201 101

present work ez1 937 0.229 2.207 20.6 0.144 79

present work ea2 897 0.249 2.207 20.2 0.214 91

GGA/PBE [41] ea1 885 0.208 (2.196) (20.1)
GGA/PBE [41] ez1 929 0.218 (2.196) (20.6)

OcGr present work esd 866 0.172 2.035 20.6 0.193 102

present work ese 461 0.558 2.035 15.1 0.238 82

GGA/PBE [41] esd 854 0.185 (2.021) (20.6)
GGA/PW [14] esd 916 0.13 2.036 (21.2) 103
GGA/PW [14] ese 503 0.47 2.036 (15.7) 82

TABLE I: Calculated Young’s modulus E, Poisson’s ratio ν, mass density ρ, speed of sound vs, UTS σu and the corresponding
strain values εu in different directions for graphene, PeHe-A, PeHe-B and OcGr compared with other values reported. Values
in parenthesis are not provided in, but evaluated using data from, the corresponding publication.

Young’s moduli E have been estimated by fitting a
3rd degree polynomial of the form σ = Fε3 +Dε2 + Eε
to the (ε, σ) values for ε in the range −0.1 ≤ ε ≤ 0.1
(Supplemental Information, Fig. S1(a)). For Poisson’s
ratio ν at ambient strain we fitted a quadratic equation
of the form

ε⊥ = ν1ε
2 − νε (2)

to the (ε, ε⊥) values for the same ε range (Fig. S1(b)
of the Supplemental Information). The obtained values
of Young’s modulus and Poisson’s ratio are presented in
Table I together with other theoretical and experimental

values.

As we see in Fig. 2 and Table I, all structures appear
to be quite isotropic in terms of stiffness and Poisson’s
ratio with OcGr being a striking exception. As expected,
graphene exhibits isotropic behavior along ea and ez di-
rections, with the highest E value among all structures.
The anisotropy for graphene of ≈ 0.2% and ≈ 1% on
the average for Young’s modulus and Poisson’s ratio, re-
spectively, can be attributed to numerical errors. The
anisotropy of PeHe-A and PeHe-B is ≈ 5 − 6% for stiff-
ness, while for the Poisson’s ratio it is ≈ 5% and ≈ 20%
for PeHe-A and PeHe-B, respectively.
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FIG. 3: Ultimate tensile stress σu versus εu.

The structures under investigation can be sorted in
terms of stiffness, from the highest to the lowest E val-
ues as: graphene > PeHe-B > OcGr(esd) ' PeHe-A >
OcGr(ese). In terms of Poisson’s ratio from the lowest
to the highest ν they can be sorted as: OcGr(esd) /
graphene < PeHe-B < PeHe-A < OcGr(ese). The highly
anisotropic behavior of OcGr has been studied and ex-
plained in detail elsewhere53, and it has been attributed
to the topology of OcGr.

Using the obtained values for E, we can calculate the
longitudinal speed of sound vs =

√

E/ρ (ρ is the mass
density), for the corresponding direction. The values of
vs for all the structures and the strain directions we con-
sidered are presented in Table I. As one can see, graphene
exhibits the highest vs value. Excluding OcGr in the ese
direction, all allotropes (including graphene) exhibit high
vs values, ranging between 19.3 and 21.14 km/sec. Simi-
lar vs values have been reported for PeHe-A, PeHe-B and
graphene (19.7, 20.0 and 24.0 km/sec, respectively)22 us-
ing the slope at Γ point of the phonon dispersion obtained
with the use of the Tersoff interatomic potential.

B. Ultimate tensile strength and fracture

We estimate the UTS, σu, corresponding to an ulti-
mate strain εu, by fitting a quadratic function for the
stress-strain curve in the region of the highest strain val-
ues. Our results are presented in Fig. 3, as well as in the
Table I, together with results form the literature. The
half of strain step δε/2 = 0.0125 adopted in our calcula-
tions can be considered as the estimated error for εu. For
all the structures and strain directions, σu is extremely
high in comparison with that of common high-UTS ma-
terials and are comparable to those of graphene, which
exhibit the highest σu for both ez and ea strain direc-
tions.

The behavior of OcGr, PeHe-A and PeHe-B under
strain in different directions is shown in Figs. 4-8. The
series of snapshots in these figures, show the structural
changes for increasing ε. In each successive snapshot, at
least one additional bond exceeds in length the 1.65 Å,
assuming that breaking starts at this value. Bonds, can-

FIG. 4: Snapshots of OcGr for specific strain values along (a)
esd and (b) ese directions. Bonds start breaking in both cases
at ε = 0.175. The arrows next to the strain values indicate
the strain direction.

ε = 0 ε = 0.125 → ε = 0.175 → ε = 0.275 →

ε = 0 ε = 0.200 ↑ ε = 0.225 ↑ ε = 0.250 ↑

FIG. 5: Snapshots of PeHe-A for specific strains along ez1
(top) and ea1 (bottom). The arrows show the strain direction.

didates for breaking, are those with the highest elonga-
tion. Naturally, such bonds are those which are either
directed along or with a small angle to the strain di-
rection. The best examples are bonds in graphene and
OcGr. Indeed, for OcGr, the bonds that break are those
corresponding to the adjacent octagon edges (for stress
along esd direction), or the square edges (for strain along
ese direction), as shown in Fig. 4. For the esd and ese

FIG. 6: Snapshots of PeHe-B for specific strains along ez1
(center) and ea1 (right). The arrows show the strain direction.
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ε = 0 ε = 0.125 ↑ ε = 0.150 ↑ ε = 0.175 ↑ ε = 0.200 ↑ ε = 0.225 ↑ ε = 0.275 ↑ ε = 0.300 ↑

FIG. 7: Snapshots of PeHe-A for specific strain values along ez2. The arrows show the strain direction.

strain directions and for ε > εu, OcGr was found to break
into lines of interconnected squares or arm-chair chains.
For even higher ε, e.g. ε ' 0.275, straight carbene chains
are obtained.

For graphene strained along ea direction, the bonds
are either at an angle of ±60o with respect to the strain
direction, or they are parallel to the strain direction. It is
expected therefore, that the latter will break first, creat-
ing, theoretically, zig-zag chains. On the other hand, for
graphene strained along ez direction, the bonds are ei-
ther at an angle of 30o or vertical to the strain direction.
Therefore, bonds in the zig-zag chains will break first,
leading, theoretically, to carbon dimers. In reality, how-
ever, more complicated structures will be the products of
fracture since not all bonds will break simultaneously. In
the fracture processes for graphene, described above, one
bond per atom breaks for strain along ez direction, while
half a bond per atom breaks for strain along ea direction.
This explains why UTS for the ez direction is higher than
that for the ea, as seen in Fig. 3 and Table I. The the-
oretically obtained fracture strain for both directions is
higher than the maximum value 0.3, of our study. It is
also much higher than the experimental value, due to ef-
fects owe to the finite size of the supercell, temperature
and defects.

Under extreme strain, i.e. for values higher than εu,
the investigated allotropes either dissociate into linear
chains, or undergo a transition to structures contain-
ing carbene units accompanied by bond recreation, like
PeHe-A strained along ez1 and ez2 directions, and PeHe-
B strained alone ea2 direction. Those chains are ei-
ther zig-zag or arm-chair chains (graphene ea, OcGr ese,
PeHe-A ea1, PeHe-B ea2), or they are composed of inter-
connected squares (OcGr esd), or couple of adjacent pen-
tagons (PeHe-B ea1). For even higher strain values, arm-
chair and zig-zag chains undergo a transition to carbene
chains. As in the case of graphene, and for similar rea-
sons, the experimental procedure of fracture is expected
to be complicated with diverse products and differences
in break points.

FIG. 8: Snapshots of PeHe-B for strains along ea2. The ar-
rows show the strain direction.

C. Strain as a synthetic route factor

As already shown, at equilibrium PeHe-A, PeHe-B
and OcGr are energetically higher than graphene and
a 90o rotation of a bond has an energy cost of the or-
der of 1.8-2.0 eV. However, this energy cost might be
eliminated upon tensile strain of graphene in certain di-
rections, which in turn would favour the conversion of
graphene to its allotropes. In the present work we atempt
to find possible strain pathways which favour the SWTs
presented in Fig. 1, leading to the conversion of graphene
to PeHe-A, PeHe-B and OcGr.

For this conversion scenario, we consider graphene
strained along a certain direction. Then, SWTs are car-
ried out in the strained graphene structure, if they are
favoured by strain in that direction. In principle, the re-
sulting allotrope structure would be also strained along
the same strain direction and hopefully, upon strain re-
lease, it leads to its equilibrium structure. For the con-
version of graphene to PeHe-A and PeHe-B, those SWTs
are shown with the red colored bonds in the top and bot-
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tom panels of Fig. 1, respectively, while for its conversion
to OcGr there are two different set of SWTs, correspond-
ing to the rotation of the red and orange coloured bonds
in the top (pathway A) and bottom panel (pathway B)
of Fig. 1.
This conversion proccess requires the existance of a

crossing point in the plots of the total energy versus
strain of graphene and its allotrope both strained along
the same strain direction. Such crossing points for dif-
ferenet strain directions, do not constitute possible con-
version pathways, and therefore they are not of interest.
Moreover, if such a crossing point exists, then, in order
for a transition from graphene to an allotrope to occur,
(i) the strain corresponding to the crossing point must be
considerably less than fracture strain and (ii) the energy
barrier for the necessary SWTs must be small.
The existence of crossing points for any direction

(n,m) (in fractional coordinates with respect to the rect-
angular unit cell vectors) can be tested qualitatively,
with a harmonic approximation for the total energy U
of graphene and its allotropes. If such crossing points
appear in the regions of large strains, (i.e. in the non
elastic regime, where the harmonic approximation can
not apply), this procedure serves as a qualitative analy-
sis for those points, to identify the directions that such
points exist.
Writing U = kε2 + U0, where k = Ev/2, E is the

Young’s modulus and v the atomic volume, and equating
the cohesive energies of graphene and the allotrope at
a strained lattice parameter a along a specific direction
(n,m), we obtain

kg(a− ag)
2/a2g = ka(a− aa)

2/a2a +∆U. (3)

The indices g and a refer to graphene and the al-
lotrope, respectively, and ∆U is their total energy dif-
ference at their equilibrium distances. ag and aa are
corresponding equilibrium lattice parameters along the
direction (n,m), i.e. ag = (n2a2g,x + m2ag,y)

1/2 and

aa = (n2a2a,x + m2a2a,y)
1/2, where ag,x, ag,y and aa,x,

aa,y are the lattice parameters along x and y directions
for graphene and its allotrope, respectively. A similar re-
lation could be written for the conversion of an allotrope
to another one, like for instance the conversion of PeHe-A
or PeHe-B to OcGr, according to the SWTs correspond-
ing to the rotation of the orange colored bonds in the top
and bottom panels of Fig. 1(e), respectively. It is worth
notting that the reversal of the order of the SWTs cor-
responding to the rotation of the orange and red colored
bonds of Fig. 1, does not consitute any extra conver-
sion pathway, since the SWTs of either the red or the
orange colored bonds in graphene lead to the same al-
lotrope structure.
For the investigation of the conversion of graphene to

PeHe-A and PeHe-B, let us assume for simplicity that
PeHe-A and PeHe-B are isotropic, i.e. ka is independent
on the strain direction. Using the obtained values for
E, we find kg ≈ 28 eV for graphene, ka ≈ 24 eV for
PeHe-A, and ≈ 26 eV for PeHe-B. Solving Eq. 3 with

respect to a and imposing that a < 1.3ag, we arrive at the
conditions |m| < 2.94|n| (for PeHe-A) and |m| > 1.33|n|
(for PeHe-B) for the existence of crossing points along
the direction (n,m). Among the high symmetry strain
directions considered in this work for graphene, only ea1
and ez2 for for its convertion to PeHe-A, and ez1 and ea2
for its convertion to PeHe-B satisfy these conditions.

On the other hand, for the investigation of the con-
version of graphene, PeHe-A and PeHe-B to OcGr, ka
depends not only on the strain direction, but also on the
SWTs, which take place for such a convertion. More de-
tails on the estimation of ka for patheway A and B for
different strain directions are presented in the Supple-
mental Information.

Following the above methodology for those estimated
ka values, we find the strain directions that favour the
formation of OcGr. According to our findings, strain
favours the conversion to OcGr (i) of PeHe-A, for all
strain directions, (ii) of graphene under the SWTs of
pathway A, for all strain directions, (iii) of graphene un-
der the SWTs of pathway B, for the strain directions with
|m| > 0.920|n|, (iv) of PeHe-B, for the strain directions
with |m| > 0.644|n|. Consequently, among the struc-
tures and the considered strain directions of our study,
only graphene under the SWTs of pathway B and PeHe-
B, both strained along ea1 direction, do not favour the
formation of OcGr.

The results of the above qualitative analysis, are con-
firmed by our DFT calculations. This is clearly shown in
Fig. 9.

Fig. 9(a) shows the total energy of graphene obtained
from our DFT calculations, as a function of its lattice
parameter for strain along ea directions (i.e. ea1, ea2
and ea3 directions), which (as mentioned) are equivalent
for graphene. In the same graph we show the DFT re-
sults for the total energy of PeHe-A strained along ea1
and PeHe-B strained along ea2 direction, the formation
of which is favoured (according to the above qualitative
analysis) from strained graphene along these directions
under the corresponding SWTs of Fig. 1. We also shown
the total energy of OcGr strained along ese direction, the
formation of which is predicted from the above qualita-
tive analysis, from strained graphene along ea1 direction,
under the SWTs of pathway A. As one can see, graphene
strained along ea direction is energetically more favor-
able than PeHe-A strained along ea1 and PeHe-B along
ea2 direction until 1.10 ag,x, i.e. for ε < 10%, while for
higher strains, the periodic net of SWTs leading to either
PeHe-A or PeHe-B leads to energy lowering. Apart from
a tiny region beyond the crossing point, that PeHe-A is
energetically lower, PeHe-B appears to be the optimal for
a broad region of the lattice parameter. OcGr strained
along ese direction becomes energetically more favorable
than graphene and PeHe-A both strained along ea1 di-
rection, for a > 1.15 ag,x and a > 1.22 ag,x, respectively,
corresponding to 15 % strain for graphene and 14 % for
PeHe-A.

Similarly, Fig. 9(b) shows the total energy of graphene
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obtained from our DFT calculations, as a function of its
lattice parameter for strain along the three equivalent
ez directions, together with the total energy of PeHe-A
strained along ez2 and PeHe-B strained along ez1, the for-
mation of which is favoured (according to the above qual-
itative analysis) from strained graphene along these di-
rections. We also show the total energy of OcGr strained
along both ese and esd directions, since their formation
from strained graphene along ea1 direction, has been pre-
dicted to be favoured from the above qualitative analy-
sis, under the SWTs of pathway A and B, respectively.
As one can see, graphene strained along ez direction is
energetically less favorable than PeHe-A strained along
ez2, PeHe-B along ez1 and OcGr along esd direction, for
a > 1.12 ag,y, 1.13 ag,y and 1.23 ag,y, respectively, (i.e.
for ε > 12 %, 13 % and 23 %, respectively). Those
strain values are larger than the corresponding values for
the arm-chair directions for those structures. Moreover,
PeHe-B strained along ez1 direction is less favorable than
OcGr along esd for a > 1.33 ag,y, corresponding to strain
ε = 12 % for PeHe-B. As seen, the energeticaly more
favourable structure for 1.12 ag,y < a < 1.33 ag,y is PeHe-
B strained along ez1 direction, while for a < 1.33 ag,y, is
OcGr strained along esd.

In contrast to the above qualitative analysis, Fig. 9(b)
shows that there is not any crossing point of the energy
curves of graphene strained along ez1 and OcGr strained
along ese directions. According to the harmonic approx-
imation prediction, that crossing point should appear at
graphene strain value ε ≈ 21 %. However, for that high
strain value of graphene, the harmonic approximation
is not so accurate, due to the softening of graphene, as
shown in Fig. 2(a), resulting to a bending of the total
energy curve towards larger strain values, thus avoiding
the crossing with the OcGr energy curve. Consequently,
this discrepancy is attributed to the anharmonicity of
graphene for such large strains. Thus, in contrast to
the results of our qualitative analysis, the conversion of
strained graphene to OcGr through pathway A is not
favoured for strain directions close to ez1.

In Fig. 9(b) we also show the total energy of PeHe-
A strained along ez1, although graphene strained along
this direction does not favour its formation. However,
PeHe-A strained along ez1 favours the formation of OcGr
(crossing point of the energy curves of PeHe-A strained
along ez1 and OcGr strained along ese). This is an exam-
ple of conversion of strained graphene to an intermediate
structure (PeHe-A) and then conversion of that structure
to OcGr favoured by different strain directions.

The obtained strain values for the crossing points are
extreme, however, they are substantially lower than the
experimentally measured value εu = 0.25, corresponding
to the UTS for graphene42. The directions that cross-
ing points are found are those that the rotating bonds
turn into or minimize their angle with, when the corre-
sponding SWTs take place which result to an elongation
of lattice parameter in those directions, as a stress reduc-
tion mechanism. Indeed, given that the Young’s moduli
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FIG. 9: Total energy per atom versus lattice parameters for
the zig-zag and armchair directions, respectively.

of graphene and the pentaheptites do not differ dramati-
cally, the existence of crossing points is mostly the result
of the enlargement of the equilibrium lattice parameters
for the allotropes compared with graphene in those di-
rections.
Even if they lead to energetically favored structures,

SWTs can only take place if the energy barriers separat-
ing the structures are overcome. At ambient strain that
barrier (7-9 eV) is rather prohibitive6,36. In order to es-
timate the dependence of the energy barrier of SWTs on
the strain, we performed transition-state calculations on
a strained pyrene molecule, shown in Fig. 10(top)(a), us-
ing Gaussian 09 program54 with B3LYP functional55,56

and the 6-31G∗ basis set. The strain was applied by
freezing the distances between atoms 3,4 and 5,6 (Fig. 10
top panel, (a)) while the geometry of the transition state
(b) was optimized. In Fig. 10(bottom), we see that
the energy difference ∆E of the structure with SWT
is reduced with strain and become energetically favor-
able for a strain ∼ 12% in consistency with our periodic
DFT calculations. In addition, the energy barrier, Eb,
for the SWT is reduced substantially from ∼ 8.5 eV to
less than 5 eV for large strains in agreement with atom-
istic simulations39. Despite its substantial reduction this
barrier remains large enough and prohibitive for SWTs.
However, due to this substantial reduction, strain may
become a possible assisting factor for the synthesis of
these allotropes in the future.
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FIG. 10: The transition diagram of pyrene molecule (top), as
well as the transition state energy Eb and the energy difference
∆E of (c) from (a) as a function of uniaxial strain (bottom).

IV. CONCLUSIONS

Performing ab-initio DFT calculations, we study the
response of representative periodic graphene allotropes
(namely two pentaheptites and octagraphene) to uniax-
ial strain for several high symmetry strain directions in
comparison with graphene. Those graphene allotropes
can be derived from graphene upon extensive, periodi-
cally arranged SWTs. Based on this, we study strain as
a possible assisting factor for SWTs, which could make
possible the synthesis of these structures from graphene.

According to our findings, pentaheptites are quite
isotropic in terms of strength and Poisson’s ratio, while
octagraphene is not. The allotropes of our study ex-
hibit high Young’s modulus, speed of sound and UTS
values, which are comparable to graphene, although
smaller. Poisson’s ratio is higher in pentaheptites than in
graphene. For octagraphene strained along the square-
diagonal direction it is similar to graphene, and for the
square-edge direction it is much higher. For strain values
higher than the corresponding to the UTS, the structures
of our study either dissociate to linear chains, or they un-
dergo phase transition to structures containing carbene
units.

For strains exceeding in value 12% and 10% for zig-
zag and arm-chair directions, respectively, graphene be-
come less favorable energetically than its pentaheptite
allotropes. Although extreme, these values of strain are
still smaller than the experimentally identified strain of
25% corresponding to the UTS of graphene. The energy
barrier upon strain for the transition to these allotropes
remains quite prohibitive, however, it is reduced signifi-
cantly from 7-9 eV to 4-5 eV, allowing the possibility that
strain could become an assisting factor for their synthesis
from graphene, in combination with other processes like
for instance catalysis or irradiation.
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