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We report an extension of our tight binding molecular dynamics method@Phys. Rev. B57, 10069
~1998!# by incorporating theNosé-bath and the multiple histogram approximations, so as to be
applicable to cluster studies at finite temperatures in an efficient way. This generalization allows one
to calculate the caloric curve for the cluster and use this to study the effect of temperature on the
structural, electronic, and magnetic properties of clusters. The method is used to study the variation
of structural and magnetic properties with temperature as well as to obtain the caloric curves of the
Ni13 cluster. The results are compared with those obtained using classical potentials to describe the
interatomic interactions. ©2003 American Institute of Physics.@DOI: 10.1063/1.1619931#
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I. INTRODUCTION

Clusters of transition metal atoms~CTMAs! have at-
tracted major research interest recently, from both a tech
logical and theoretical point of view. However, most of t
theoretical investigations have been limited to zero temp
ture (T50) studies~see Ref. 1 and references therein!. All
the experimental results reported for these clusters, howe
were obtained atT.0 and have revealed interesting tren
in the evolution of structural, electronic and magnetic pro
erties as a function of their size.2–8 Even though theoretica
calculations performed at zero temperature have had s
success in confirming some of the experimental trends, th
calculations fail to provide satisfying answers to the str
tural changes observed in experiments on CTMAs as t
size increases.4,5 These may be attributed to entropic term
missing fromT50 considerations.9,10

Additionally, study of otherT-dependent cluster prope
ties also requires the explicit incorporation of temperat
effects in theoretical simulations. Such properties inclu
for example, anomalous evolution with size and tempera
of the average magnetic moment per cluster atom (^m i&) in
Fen clusters;7 the experimentally observed lowering of th
Curie (TC) and Debye (QD) temperatures of Con clusters as
compared to their bulk values;8 the blocking temperature
(Tb) of the clusters; the evolution with size of the vario
terms that contribute to the specific heat of the cluster;7,11 the
temperature-induced phase transition~especially the second
order phase transition, i.e., from ferromagnetic to param
netic state!;7 the thermal expansion coefficient of th
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cluster,12 etc. The theoretical study of these properties po
a severe challenge to computational schemes limited tT
50. For this reason, dynamical properties of clusters h
been mostly studied using simple classical potentials negl
ing the detailed electronic structure of the cluster.

It should be noted that the structural properties of tra
sition metal clusters are intricately linked to the magne
properties, andvice versa. Any realistic simulations of struc-
tural properties of CTMAs at finite temperatures must, the
fore, also incorporate a dynamic consideration of magn
effects. To the best of our knowledge, theoretical simulat
methods incorporating both structural and magnetic effect
finite temperatures have not been used in the case of CTM
until the present.

In the present work, we extend our zero-temperat
tight-binding molecular dynamics~TBMD! method1 to in-
clude the nonzero temperature regimes using the mult
histogram method~MHM !13,14 and theNosé–Hoover ther-
mostat method.13–20We, thus, retain the quantum mechanic
approach in which a full description of the electronic stru
ture of the cluster is accounted for within the tight-bindin
~TB! approximation. Entropic terms of free energy are e
plicitly included in our method by construction, as discuss
below. The present generalization allows us to construct
caloric curve of the system and then use it to calculate
thermodynamic properties of the cluster. Briefly, the ba
features of our method are as follows.

II. BRIEF REVIEW OF COMPUTATIONAL METHOD

At T.0 a transition metal cluster, when thermalized in
heat bath, is described by the canonical probability distri
tion function of total energy,PT(E), which specifies the
probability that the system will be found in the energy inte
1 © 2003 American Institute of Physics
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val @E,E1DE# at the specified temperatureT. The distribu-
tion function corresponding to this temperature, within t
canonical ensemble description, is13,14,17–20

PT~E!5
nT~E!

NT
5

@DG~E!#e2E/kBT

ZT
, ~1!

wherenT(E) is the number of states in the energy interv
@E,E1DE#, NT is the total number of accessible states,kB

is Boltzmann’s constant,DG(E) is the number of all the
different states with energy in the interval@E,E1DE# and
ZT the partition function at temperatureT,

ZT5(
i

exp~2bEi !5(
Ei

DG~Ei !exp~2bEi !. ~2!

A molecular dynamics~MD! simulation at a given tem
peratureT provides numerical values fornT(E) at every ac-
cessible energyE. Let these energies lie in the interv
@Emin ,Emax#. We discretize this energy interval~in N inter-
vals, each of widthDE) for a given set of temperaturesTj ,
j 51,...,M . We then take the logarithm of both sides of E
~1! in the discretized version and define the quantityRi j in
the form of a finite set of algebraic equations, as follows

Ri j 5 ln
nTj

NTj

1
Ei

kBTj
2 ln@DG~Ei !#1 ln ZTj

,

i 51,...,N; j 51,...,M . ~3!

Note that in the exact case,Ri j 50. The system of Eqs.~3! is
overdetermined, as it includesN1M unknowns @i.e., the
terms DG(Ei) and ZTj

] in terms of N3M equations. For
such a system, the determination of the unknown terms
be achieved by employing a nonlinear least square fitting
particular, we make use of the proposed MHM.13,14,17–20Ac-
cording to this method, the maximum likelihood estima
x2 is defined as

x25(
i 51

N

(
j 51

M

nTj
~Ei !Ri j

2 , ~4!

subject to the requirements

]x2

] ln@DG~Ei !#
50, i 51,...,N;

]x2

] ln ZTj

50, j 51,...,M . ~5!

This procedure sets upN1M equations inN1M unknowns.
The solution of the system of Eqs.~5! becomes feasible in
two steps. In the first, the partition functionsZTj

for a finite
set of temperaturesTj , j 51,...,M (M'200) are obtained. In
the second step, we compute the entropy termsS(Ei)
5kB ln@DG(Ei)# ~within an additive constant! for a much
larger set of energy valuesEi , i 51,...,N (N'6000).17

We next generalize our TBMD scheme for transiti
metal systems used previously in theT50 case1 by incorpo-
rating theNosé–Hoover thermostat method,13–18 which is a
constant temperature method in an extended system sch
that includes an extra degree of freedom,z, which ensures
Downloaded 18 Feb 2004 to 139.91.254.18. Redistribution subject to AIP
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that the system is in thermodynamic equilibrium with a he
bath. As a result, the equations of motion for a cluster c
sisting ofNcl atoms in contact with a heat bath at tempe
ture T can be generalized as follows:

dpi

dt
52

]E

]r i
2zpi , i 51,...,Ncl , ~6!

dz

dt
5

2

W H (
i 51

Ncl pi
2

2mi
2

f

2
kBTJ , ~7!

whereE is the total energy of the cluster obtained using t
TBMD method,W is a parameter representing themassof
the heat bath, andf is the number of degrees of freedom f
the system~i.e., f 53 Ncl-6 for a cluster with no rotational o
translational degrees of freedom!.

The details of our tight-binding molecular dynamic
~TBMD! scheme can be found in Ref. 1. Here we give a br
overview.

The total energyE is written in its general form as a sum
of several terms,1

E5Uel1U rep1U0 , ~8!

whereUel is the sum of the one-electron energiesEn for the
occupied states:

Uel5(
n

occ

En . ~9!

In the tight-binding schemeEn is obtained by solving the
characteristic equation:

~H2En1!Cn50, ~10!

whereH is the Hamiltonian of the system.
The Hellmann–Feynman theorem for obtaining the el

tronic part of the force is given by1

]En

]x
5Cn†

]H

]x
Cn. ~11!

Our TBMD scheme for a single-species system is ba
on a minimal set of five adjustable parameters. These par
eters are determined by fitting to experimental data for qu
tities such as the bond length, the vibrational frequency,
the binding energy of the dimer, the cohesive energy of
corresponding bulk state, and the energy level spacing of
lowest magnetic states of the dimer and trimer clusters
the absence of experimental data, we fit to data for sm
clusters obtained usingab initio methods. The fixed set o
TB parameters are obtained from the universal scheme
posed by Harrison22 suitably scaled with respect to the inte
atomic distance.1

For discussion purposes~see below! we recall that the
Slater–Koster tight-binding parameters,Vklm(r ), have the
following dependence on the interatomic distancer in the
original TBMD scheme:21

Vklm~r !5Vklm
~0! ~r !u~Rcutoff2r !,

k,l 5s,p,d,...; m5s,p,d,..., ~12!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where the matrix elementsVklm
(0) (r ) are given in terms of the

universal matrix elements of Harrison,22 u(x) is the step
function, andRcutoff is a cutoff distance beyond which th
interatomic interaction is taken to be zero.

The total energy expression also derives contributi
from ion–ion repulsion interactions. This is approximated
a sum of pairwise repulsive terms and included inU rep. This
sum also contains the corrections arising from the dou
counting of electron–electron interactions inUel .

1 At zero
temperature, theU0 is a constant that merely shifts the ze
of energy; it is expressed as a function of the number of
interatomic bonds developed in the cluster.1

It is apparent that at zero temperature there is no con
bution of theU0 term to the total force. The contributio
from U rep, on the other hand, is rather straightforward. O
can then easily do molecular dynamics simulations by
merically solving Newton’s equation,

m
d2x

dt2
5Fx52

]E

]x
, ~13!

to obtainx as a function of time.
At nonzero~and especially large! temperatures, theU0

term can contribute to the total force per atom, since
bond lengths~and consequently the number of bonds! are
allowed to vary in a larger range than in the case ofT50.
The effect of bond length variation will be minimal if th
variation is such that the bonds remain within the cutoff d
tanceRcutoff .

III. RESULTS AND DISCUSSION

We choose the Ni13 cluster as a prototype for the appl
cation of our formalism since this system has been pre
ously studied for structural properties at finite temperatu
although using only classical interatomic potentials and w
out the consideration of any magnetic effects.23–25

By performing a series of MD simulations~of approxi-
mately 23106 time steps each! we obtain the probability
distribution function,PT(E) @Eq. ~1!#, for temperatures rang
ing from 0 to 700 K. These distributions contain the fu
thermodynamic information~for this temperature range!, as
they allow us to derive the caloric curve~CC! of Ni13.
Within the MHM, we solve Eqs.~5! and obtain the numbe
of statesDG(Ei). From these, the partition function,ZT , can
be obtained@according to Eq.~2!# from which we calculate
the total energy. The efficiency of the MHM is that it can
applied using a relatively small number of distributio
PT(E), provided that they exhibit considerable overl
among themselves. It should be noted that the microcan
cal CC can be obtained by plotting the energies of the
trema ofPT(E) versus the temperature,11 while the canonical
CC can be obtained simply by plotting^E(T)&
5*EPT(E)dE versus temperature.

In Fig. 1 we present two independent calculations of
average total energy per atom,^E(T)&/Ncl , as a function of
temperature. The solid curve corresponds to the result
tained from the equation̂E(T)&52] ln ZT /]b, b51/kBT,
i.e., the outcome of the MHM. The dashed curve correspo
to the time average energy,^E(T)&, obtained from the tight-
Downloaded 18 Feb 2004 to 139.91.254.18. Redistribution subject to AIP
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binding total energy expression given by Eq.~8!. In the inset
we present the entropy function,S, as a function of the en-
ergy per atom (S5kB ln DG). The accuracy of the MHM-
derived energy curve is limited at very low temperatures
cause of the very small overlap of the distribution functio
PT(E) ~which behave asd functions at these temperatures!.
Similarly, the accuracy is also limited at the high
temperature end as in this region information is needed fr
distributions at higher temperatures. In both cases, howe
the accuracy can be improved according to the requirem
of the solution either by taking distributions at a finer tem
perature mesh at low temperatures or including distributi
for higher temperatures.

In Fig. 2 we present the results for the heat capac

FIG. 1. Two independent calculations of the average total energy per a
^E(T)&/Ncl , as a function of temperature. The solid curve corresponds
the result obtained from the equation^E(T)&52] ln ZT /]b, b51/kBT, i.e.,
the MHM. The dashed curve corresponds to the time-averaged total en
per atom obtained from the tight-binding total energy expression. In
inset we present the entropy function as a function of the energy per a

FIG. 2. Two independent calculations of the specific heat per atom,cV , of
Ni13 as a function of temperature. The solid curve is obtained from the s
of the solid curve of Fig. 1. The dashed curve is obtained from the equa
cV5(1/NclkBT2)(^E2&2^E&2), where^E2& and ^E& are time averages ob
tained according to the TB total energy expression~see the text!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cV(T)/Ncl as a function of the temperature using two ind
pendent approaches. In particular, the solid curve refer
the result obtained according to the formulacV(T)
5]^E(T)&/]T ~i.e., from the slope of the solid curve of Fig
1 that is the result of the MHM!. The dotted curve forcV is
obtained from the following equation:cV5@1/kBT2)(^E2&
2^E&2)], where botĥ E2& and^E&2 are time-averaged val
ues obtained directly from the MD simulations and are o
tained from the tight-binding total energy expression@i.e.,
that of Eq.~8!.1 Once again, it is clear from this figure tha
the MHM leads to more smooth results due to its efficien
in providing data for an infinitely dense mesh of temperat
points. However, the accuracy of the results is very poor
T,50 K for reasons explained in the previous paragraph

It is apparent from Figs. 1 and 2 that our results us
the two methods for the Ni13 cluster are very similar and
therefore, appear to be independent of the numerical pr
dure that is used and validates the accuracy and applicab
of the method we propose. In particular, we find that Ni13 is
very stable~retaining its zero-temperature geometry, i.e., t
of a distorted prismlike structure1! up to the transition tem-
peratureTtrans'180 K, beyond which it undergoes a pha
transition. In Fig. 3 we present snapshots of the Ni13 cluster
prior and after the phase transition~i.e., at temperatures 0
100, and 200 K, respectively!. We find that forT,Ttrans the
cluster geometry exhibits a resonance structure that is a
ture of two isoenergetic mirror geometries. ForT.Ttrans the
cluster departs from these two geometries, with its sh
changing as the temperature increases.

The phase transition is indicated by a change in the sl
of the caloric curves shown in Fig. 1. We note that simu
tions using classical potentials predict a transition tempe
ture for this cluster, ranging from 240–1700 K, depend
strongly on the type of the classical potential used~see
below!.23–25

In our case, the existence of a phase transition at 18
is more clearly shown in Fig. 4, where we present the L
demann index ~or the root mean square bond leng
fluctuation!27,28 for the Ni13 cluster. In Fig. 4, we present th
Lindemann index,d, as a function of temperature obtaine
from the formula

d5
2

Ncl~Ncl21! (i 51

Ncl

(
j . i

Ncl A^r i j
2 &2^r i j &

2

^r i j &
. ~14!

FIG. 3. Snapshots of the ground state geometry of Ni13 at ~a! 0, ~b! 100, and
~c! 200 K.
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The Lindemann index is associated with the phase transi
from a solid to a liquid. As Fig. 4 shows, there is a pha
transition~for d.0.1) near 180 K.

In order to investigate the large discepancy in the tr
sition temperature found between our results and those
ported in Ref. 23, we performed the following two tests.
the first, we applied the MHM@described by Eqs.~1!–~7!#
using the classical potential, as used in Ref. 23. This sim
lation reproduced exactly the results of Ref. 23 for the g
ometry ~icosahedral! and theTtrans. We note, however, tha
the classical potential employed in Ref. 23 fails to reprodu
known results for small clusters as, for example, the bo
length and vibrational frequency of the Ni2 dimer.29 In our
second test we first modified the classical potential so a
reproduce the experimentally known small cluster data
repeated the calculations to determine the transition temp
ture. This modified classical potential produced a transit
temperature much lower in value than the 800 K in Ref.
In particular, we found a transition temperature of'320 K.
A lower transition temperatureTtrans5280 K was also ob-
tained using the potential proposed by Uppenbrink a
Wales.25 This potential combines the two-body Lennar
Jones terms with three-body Axilrod–Teller terms and w
claimed suitable for cluster calculations. It is worth notin
that this potential predicts a ground state geometry for N13

that exhibits aC2v symmetry, in close agreement with th
results of our TBMD method.1

The tests described above suggest the source of a
sible error that is inherent in the construction of the class
interatomic potential that is used. Furthermore, the result
our second test allow us to claim that both the TB and
classical description of the interatomic potential could le
to equivalent results if this error is properly corrected. A
cording to our findings, such corrections should be applied
the case of the classical approach in fitting the classical
teratomic potentials so as to reproduce small cluster pro
ties in agreement with known experimental results.

In addition to the above conclusions, the present res
have indicated that the MHM is very efficient when used
combination with a classical interatomic potential, provid

FIG. 4. The Lindemann index of Ni13 as a function of temperature.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the latter accurately describes the small cluster results.
is a significant conclusion since for systems consisting
very large number of atoms one needs to use classical po
tials as the TBMD method becomes computationally proh
tive.

In agreement with Ref. 23, we find that the calculat
specific heatcV of Ni13 ~see Fig. 2! exhibits a resonancelike
peak at the transition temperature. It is also worth point
out that in Ref. 23, constant-energy~microcanonical en-
semble! simulations were performed, while in the prese
work we use the constant-temperature~canonical ensemble!
simulations. Classical potentials have also been used to s
the Ni429 cluster with the transition temperature predicted
be 1400 K.26

Finally, we present our results for the magnetic mome
m(T), of the Ni13 cluster using our method. In Fig. 5, w
show the temperature dependence ofm(T) for T up to 700 K.
For each temperature, the magnetic moment shown in Fi
is the statistical time average of the magnetic moment
cluster atom. The standard deviation is found to be a func
of temperature; it is nearly zero for temperatures less t
100 K and gets larger as the temperature increases, reac
its maximum value~' 65%! for T.Ttrans. As seen in the
figure, the magnetic moment does not change appreci
with temperature, remaining within the range specified
the calculated error bars. It is worth noting that forT
.Ttrans, the magnetic moment starts decreasing, sligh
reaching a minimum~'5% lower than its zero temperatur
value! and stays at this value~with a tendency to increas
slightly! at greater temperatures. As these changes of
average value of the magnetic moment per cluster atom
well within the error bars, one cannot claim with any ce
tainty how the magnetic moment changes with temperat
The most significant results emerging from the present
culations, however, is the width of the expected distribut
of the m(T) values. This indicates that even within the a
proximation of a single domain particle~i.e., with all mag-
netic moments of cluster atoms aligned collinearly! the mag-
netic moment of the cluster exhibits significant error ba

FIG. 5. The average magnetic moment (^m(T)&) ~per cluster atom! for the
Ni13 cluster as a function of temperature using the present method. E
bars are indicated by the short straight vertical lines.
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even at low enough temperatures. Nevertheless,
temperature-induced changes in the magnetic moment o
cluster are not as dramatic as the corresponding struc
changes of the cluster. This is significant observation beca
it suggests that the determination of the magnetic momen
the cluster does not require the accuracy needed in spe
ing the temperature-induced structural phase transitions.

The temperature dependence ofm(T) found in the
present calculations is attributed to the existence of m
isomers of Ni13, which are the result of changes in the inte
atomic distances and the charge transfers that take plac
the cluster as the temperature is varied. The temperat
induced changes in the interatomic distances result in lo
changes of the atom-coordination number and also in ap
ciable changes in the charge transfer among the cluster a
with a corresponding redistribution of spin-up and spin-do
electrons. Them(T) dependence, thus, is different in orig
from that found if it is assumed that the single particle is n
a strictly single domain particle as, for example, in the stu
of Vargaset al.30 Nevertheless, the present approach can
easily generalized to the study of magnetic properties
clusters that exhibit atoms with noncollinear magnetic m
ments as well.

IV. CONCLUSION

We have presented an efficient generalization of
zero-temperature TBMD method, which enables a quan
mechanical approach for studying structural, electronic,
magnetic properties of transition metal clusters as a func
of temperature and a canonical ensemble statistics. An ap
cation of the method to the Ni13 cluster shows significan
differences from works reported using classical potent
and microcanonical ensemble statistics. We have shown
these differences may be attributed to the inadequecy of
existing classical potentials to describe the known proper
of small Ni clusters. We have also shown that when t
factor is accounted for properly, the two methods can g
results in good agreement with each other. The incorpora
of the temperature shows interesting variations of ma
physical properties as a function of temperature as, for
ample, structural and magnetic phase changes. Of partic
interest in the present work appears to be the results for
magnetic moment of the Ni13 cluster as a function of tem
perature that indicate relatively large deviations of the av
age value of the magnetic moment. These were attribute
the existence of various isomers of Ni13 that can be reached
by thermal activation.
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