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We report an extension of our tight binding molecular dynamics mefRbgs. Rev. B57, 10069

(1998] by incorporating theNosebath and the multiple histogram approximations, so as to be
applicable to cluster studies at finite temperatures in an efficient way. This generalization allows one
to calculate the caloric curve for the cluster and use this to study the effect of temperature on the
structural, electronic, and magnetic properties of clusters. The method is used to study the variation
of structural and magnetic properties with temperature as well as to obtain the caloric curves of the
Ni, 5 cluster. The results are compared with those obtained using classical potentials to describe the
interatomic interactions. €003 American Institute of PhysicgDOI: 10.1063/1.1619931

I. INTRODUCTION cluster*? etc. The theoretical study of these properties poses
- a severe challenge to computational schemes limited to
Clusters of transition metal atomE€TMAs) have at-  _q_ For this reason, dynamical properties of clusters have

tracted major research interest recently, from both & technQseen mostly studied using simple classical potentials neglect-
logical and theoretical point of view. However, most of theing the detailed electronic structure of the cluster.

theoretical investigations have been limited to zero tempera- = |1 should be noted that the structural properties of tran-

ture (T=0) studies(see Ref. 1 and references thelelll  gjion metal clusters are intricately linked to the magnetic
the experimental results reported for these clusters, howeves e ries, andgice versaAny realistic simulations of struc-
were obtained aT>0 and have revealed interesting rendsy 5| properties of CTMAs at finite temperatures must, there-
in the evolution of structural, _elesctromc and magnetic proP<gre aiso incorporate a dynamic consideration of magnetic
erties as a function of their siZe” Even though theoretical eftacts. To the best of our knowledge, theoretical simulation
calculations performed at zero temperature have had SomM@eihods incorporating both structural and magnetic effects at

success in confirming some of the experimental trends, thesg,ite temperatures have not been used in the case of CTMAS

calculations fail to provide satisfying answers to the struc-, i the present.

tural changes observed in experiments on CTMAs as their |, ihe present work, we extend our zero-temperature
size increase$® These may be attributed to entropic termstight-binding molecular dynamicéTBMD) method to in-

. _ - . 910
missing fromT=0 considerations: clude the nonzero temperature regimes using the multiple
Additionally, study of otheiT-dependent cluster proper- histogram methodMHM )34 and theNose-Hoover ther-

ties also requires the explicit incorporation of temperature,,giat method®-2°We, thus, retain the quantum mechanical
effects in theoretical simulations. Such properties includegynrgach in which a full description of the electronic struc-
for example, anomalous evolution with size and temperaturg e of the cluster is accounted for within the tight-binding
of the average magnetic moment per cluster atom)) in (1) approximation. Entropic terms of free energy are ex-
Fe, clusters; the experimentally observed lowering of the gty included in our method by construction, as discussed
Curie (Tc) and Debye ©p) temperatures of Goclusters as  pejoy, The present generalization allows us to construct the
compared to their bulk valuésthe blocking temperature oioric curve of the system and then use it to calculate the

(Ty) of the clusters; the evolution with size of th&é’a”ousthermodynamic properties of the cluster. Briefly, the basic
terms that contribute to the specific heat of the clustethe  ¢o41res of our method are as follows.

temperature-induced phase transitiespecially the second-
ordgr phase7 transition, i.e., from fe_rromagnepc; to paramag; sniEE REVIEW OF COMPUTATIONAL METHOD
netic statg’ the thermal expansion coefficient of the
At T>0 a transition metal cluster, when thermalized in a
heat bath, is described by the canonical probability distribu-
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bElectronic mail: andriot@iesl.forth.gr tion function of total energyP+(E), which specifies the
®Electronic mail: super250@pop.uky.edu probability that the system will be found in the energy inter-
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val [E,E+ AE] at the specified temperatufe The distribu- ~ that the system is in thermodynamic equilibrium with a heat
tion function corresponding to this temperature, within thePath. As a result, the equations of motion for a cluster con-
canonical ensemble descriptiont3&*17-20 sisting of N atoms in contact with a heat bath at tempera-
ture T can be generalized as follows:
ni(E) [AT(E)]e EkeT
N, Z , oy dp;  JE - 6
W“a—ri_“’" i=1,...Ng, (6)

P+(E)=

wheren;(E) is the number of states in the energy interval
[E,E+AE], Ny is the total number of accessible staties, d¢ 2 { Nei p|

is Boltzmann's constantAT'(E) is the number of all the —=— E

f
dt - W|&2m kBT] @

different states with energy in the interet,E+ AE] and
Zy the partition function at temperatuie whereE is the total energy of the cluster obtained using the
TBMD method,W is a parameter representing thessof
Zr=2, exp(—BE)) = AT(E)exp — BE)). (2)  the heat bath, antlis the number of degrees of freedom for
' 5 the systenti.e., f =3 Ng-6 for a cluster with no rotational or
A molecular dynamic¢MD) simulation at a given tem- translational degrees of freeddm
peratureT provides numerical values for;(E) at every ac- The details of our tight-binding molecular dynamics
cessible energyE. Let these energies lie in the interval (TBMD) scheme can be found in Ref. 1. Here we give a brief
[ Emin.Emax- We discretize this energy intervéih N inter-  overview.
vals, each of widtlAE) for a given set of temperaturds, The total energ¥ is written in its general form as a sum
j=1,...M. We then take the logarithm of both sides of Eq. of several terms,
(1) in the discretized version and define the quan@fy in

the form of a finite set of algebraic equations, as follows: E=UetUrept Uo, ®)
nr E whereUg, is the sum of the one-electron energiesfor the
Rij=In—>+———In[AT(E)]+InZy, occupied states:
NT_ kBTJ J
! occ
i=1,..N; j=1,.M. 3 Ug=> Ej. 9)
n

Note that in the exact casB;; =0. The system of Eqs3) is _ o _ _ _
overdetermined, as it includés+M unknowns[i.e., the In the tight-binding schem&, is obtained by solving the

terms AT'(E;) and Zr] in terms of NXM equations. For characteristic equation:

such a system, the det_ermination of the unknown te_rr_ns can (H-g, 1)C"=0, (10)

be achieved by employing a nonlinear least square fitting. In

particular, we make use of the proposed MH#*1=2°Ac-  whereH is the Hamiltonian of the system.

cording to this method, the maximum likelihood estimator ~ The Hellmann—Feynman theorem for obtaining the elec-

x? is defined as tronic part of the force is given By
%En_ cnf s cn 11
‘§§”T<E ] @ O a
subject to the requirements Our TBMD scheme for a single-species system is based
5 on a minimal set of five adjustable parameters. These param-
X =0, i=1,.N: eters are determined by fitting to experimental data for quan-
dIn[AT(E))] tities such as the bond length, the vibrational frequency, and
Ir2 the binding energy of the dimer, the cohesive energy of the
= XZ =0, j=1,..M. (5) corresponding bulk state, and the energy level spacing of the
n

lowest magnetic states of the dimer and trimer clusters. In
the absence of experimental data, we fit to data for small
clusters obtained usingb initio methods. The fixed set of
TB parameters are obtained from the universal scheme pro-
posed by Harrisdft suitably scaled with respect to the inter-
atomic distancé.

For discussion purposdsee below we recall that the
Slater—Koster tight-binding parametei¢,,,(r), have the
following dependence on the interatomic distamci the
original TBMD schemé?

This procedure sets Uup+ M equations irfN+ M unknowns.
The solution of the system of Eq&) becomes feasible in
two steps. In the first, the partition functioﬁsrj for a finite
set of temperatureg;, j=1,...M (M~200) are obtained. In
the second step, we compute the entropy terB(g;)
=kgIN[AI'(E)] (within an additive constajptfor a much
larger set of energy valuds , i=1,...N (N~6000) '

We next generalize our TBMD scheme for transition
metal systems used previously in fhie:0 casé by incorpo-

rating theNose-Hoover thermostat methot? ' which is a Vi (N =V (1) 8(Reuror— 1),
constant temperature method in an extended system scheme
that includes an extra degree of freedafnwhich ensures k,I=s,p,d,...; u=o,m39,..., (12
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where the matrix elemenm(k?,l(r) are given in terms of the 04
universal matrix elements of Harriséh,d(x) is the step 003
function, andR . is a cutoff distance beyond which the
interatomic interaction is taken to be zero. 63
The total energy expression also derives contributionss
from ion—ion repulsion interactions. This is approximated by
a sum of pairwise repulsive terms and includedlig,. This
sum also contains the corrections arising from the double
counting of electron—electron interactions lh,.* At zero
temperature, thé), is a constant that merely shifts the zero
of energy; it is expressed as a function of the number of the o.1
interatomic bonds developed in the cluster. | 7 Time average (TBMD)
It is apparent that at zero temperature there is no contri- — MHM
bution of theU, term to the total force. The contribution
from U, on the other hand, is rather straightforward. One 0 200 e r;?jore R 600 800
can then easily do molecular dynamics simulations by nu- b ’
merically solving Newton’s equation, FIG. 1. Two independent calculations of the average total energy per atom,
d?x JE (E(T))/Ng, as a function of temperature. The solid curve corresponds to
M- =F,=— —, (13) the result obtained from the equati¢B(T))=—d In ZﬂﬁB, B=1kgT, i.e.,
dt IX the MHM. The dashed curve corresponds to the time-averaged total energy

) ] ) per atom obtained from the tight-binding total energy expression. In the
to obtainx as a function of time. inset we present the entropy function as a function of the energy per atom.

At nonzero(and especially largetemperatures, the,
term can contribute to the total force per atom, since the

bond lengths(and consequently the number of bondse  pinding total energy expression given by E8). In the inset
allowed to vary in a larger range than in the caseTef0. e present the entropy functioB, as a function of the en-
The effect of bond length variation will be minimal if the ergy per atom $=kgIn AT'). The accuracy of the MHM-
variation is such that the bonds remain within the cutoff diS-derived energy curve is limited at very low temperatures be-
tanceRcyoff- cause of the very small overlap of the distribution functions
P+(E) (which behave ag functions at these temperatuyres
Similarly, the accuracy is also limited at the high-
temperature end as in this region information is needed from
We choose the Nj cluster as a prototype for the appli- distributions at higher temperatures. In both cases, however,
cation of our formalism since this system has been previthe accuracy can be improved according to the requirements
ously studied for structural properties at finite temperaturespf the solution either by taking distributions at a finer tem-
although using only classical interatomic potentials and with-perature mesh at low temperatures or including distributions
out the consideration of any magnetic effecis® for higher temperatures.
By performing a series of MD simulatior{®f approxi- In Fig. 2 we present the results for the heat capacity
mately 2<10° time steps eaghwe obtain the probability
distribution functionP+(E) [Eq. (1)], for temperatures rang-
ing from 0 to 700 K. These distributions contain the full 0.00035
thermodynamic informatiofffor this temperature rangeas
they allow us to derive the caloric curve€C) of Niys. K
Within the MHM, we solve Eqs(5) and obtain the number
of statesAI'(E;). From these, the partition functiody, can 0.0003
be obtainedaccording to Eq(2)] from which we calculate
the total energy. The efficiency of the MHM is that it can be =
applied using a relatively small number of distributions =
P+(E), provided that they exhibit considerable overlap
among themselves. It should be noted that the microcanoni
cal CC can be obtained by plotting the energies of the ex- Y Time average (TBMD)

Entropy (S)
8

o
2
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Ill. RESULTS AND DISCUSSION

0.00025

trema ofP+(E) versus the temperatutéwhile the canonical —— MHM

CC can be obtained simply by plotting(E(T))

= [EP1(E)dE versus temperature. 0.0002 200 200 00 200
In Fig. 1 we present two independent calculations of the Temperature, T (K)

average total energy per atof&(T))/Ny, as a function of
temperature. The solid curve corresponds to the result ol=IG. 2. Two independent calculations of the specific heat per atgmpf

; ; _ _ Ni,3 as a function of temperature. The solid curve is obtained from the slope
.tamed from the equatlo(]E(T» dInZ7/3p, p=1KkgT, of the solid curve of Fig. 1. The dashed curve is obtained from the equation
i.e., the outcome of the MHM. The dashed curve correspondg, — (1/N ksT?)((E2) —(E)?), where(E?) and(E) are time averages ob-

to the time average energdE(T)), obtained from the tight- tained according to the TB total energy expressisee the tejt
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FIG. 3. Snapshots of the ground state geometry ¢f ti(a) 0, (b) 100, and = 01 |
(c) 200 K.
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. . . Temperature (K)
cy(T)/Ng as a function of the temperature using two inde-

pendent approaches. In particular, the solid curve refers to FIG. 4. The Lindemann index of hj as a function of temperature.
the result obtained according to the formula,(T)
=9(E(T))/JT (i.e., from the slope of the solid curve of Fig.
1 that is the result of the MHM The dotted curve focy is  The Lindemann index is associated with the phase transition
obtained from the following equatiort,=[1ksT?)((E*)  from a solid to a liquid. As Fig. 4 shows, there is a phase
—(E)?)], where both(E?) and(E)? are time-averaged val- ransition (for >0.1) near 180 K.
ues obtained directly from the MD simulations and are ob- |4 order to investigate the large discepancy in the tran-
tained from the tight-binding total energy expressj@e.,  sjtion temperature found between our results and those re-
that of Eq.(8)." Once again, it is clear from this figure that ported in Ref. 23, we performed the following two tests. In
the MHM leads to more smooth results due to its efficiencyne first, we applied the MHMdescribed by Eqs(1)—(7)]
in providing data for an infinitely dense mesh of temperaturgsing the classical potential, as used in Ref. 23. This simu-
points. However, the accuracy of the results is very poor folation reproduced exactly the results of Ref. 23 for the ge-
T<50K for reasons explained in the previous paragraph. ometry (icosahedraland theT,.,.. We note, however, that

It is apparent from Figs. 1 and 2 that our results usinghe classical potential employed in Ref. 23 fails to reproduce
the two methods for the N cluster are very similar and, known results for small clusters as, for example, the bond
therefore, appear to be independent of the numerical Procgangth and vibrational frequency of the Niimer? In our
dure that is used and validates the accuracy and applicabilityecond test we first modified the classical potential so as to
of the method we propose. In particular, we find thatsN8  reproduce the experimentally known small cluster data and
very stable(retaining its zero-temperature geometry, i.e., thaepeated the calculations to determine the transition tempera-
of a distorted prismlike structuteup to the transition tem- yre. This modified classical potential produced a transition
peratureT,n¢~180 K, beyond which it undergoes a phasetemperature much lower in value than the 800 K in Ref. 23.
transition. In Fig. 3 we present snapshots of thesNluster | particular, we found a transition temperature~6820 K.
prior and after the phase transitidne., at temperatures 0, A |ower transition temperatur@ ., 280 K was also ob-
100, and 200 K, respectivglyWe find that forT<Tyansthe  tained using the potential proposed by Uppenbrink and
cluster geometry exhibits a resonance structure that is a mixp/zles?® This potential combines the two-body Lennard-
ture of two isoenergetic mirror geometries. HOF Tyansthe  jones terms with three-body Axilrod—Teller terms and was
cluster departs from these two geometries, with its shapg|aimed suitable for cluster calculations. It is worth noting
changing as the temperature increases. that this potential predicts a ground state geometry fgg Ni

The phase transition is indicated by a change in the slopgyat exhibits aC,, symmetry, in close agreement with the
of the caloric curves shown in Fig. 1. We note that simula-resyits of our TBMD method.
tions using classical potentials predict a transition tempera- The tests described above suggest the source of a pos-
ture for this cluster, ranging from 240-1700 K, dependingsibe error that is inherent in the construction of the classical
strongly on the type of the classical potential ussee jnteratomic potential that is used. Furthermore, the results of
below).%-2° our second test allow us to claim that both the TB and the

In our case, the existence of a phase transition at 180 Kjassical description of the interatomic potential could lead
is more clearly shown in Fig. 4, where we present the Lin-o equivalent results if this error is properly corrected. Ac-
demann index(or the root mean square bond length cording to our findings, such corrections should be applied in
fluctuation®”**for the Ni; cluster. In Fig. 4, we present the the case of the classical approach in fitting the classical in-
Lindemann indexs, as a function of temperature obtained teratomic potentials so as to reproduce small cluster proper-

from the formula ties in agreement with known experimental results.
Ny N > In addition to the above conclusions, the present results
2 o Nel /<r__>_<r__>2 . . .. .
i ij (14) have indicated that the MHM is very efficient when used in

1)

~ Ng(Ng—1) &1 15 (rij) combination with a classical interatomic potential, provided
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1.2 - - - even at low enough temperatures. Nevertheless, the

temperature-induced changes in the magnetic moment of the

cluster are not as dramatic as the corresponding structural

11t - ] changes of the cluster. This is significant observation because

eSS |y 1T it suggests that the determination of the magnetic moment of

7 iliir,iﬁiil ||||||||||||| the cluster does not require the accuracy needed in specify-
sl

i
hlhiﬂ!mh"" |||||||JI| B ] ing the temperature-induced structural phase transitions.
I e The temperature dependence p{T) found in the
present calculations is attributed to the existence of many
isomers of Njz, which are the result of changes in the inter-
0.9 1 ] atomic distances and the charge transfers that take place in
the cluster as the temperature is varied. The temperature-
induced changes in the interatomic distances result in local
0.8 : : : changes of the atom-coordination number and also in appre-
0 200 400 600 800 ciable changes in the charge transfer among the cluster atoms
Temperature (K) with a corresponding redistribution of spin-up and spin-down
FIG. 5. The average magnetic momefy(T))) (per cluster atomfor the  €lectrons. Theu(T) dependence, thus, is different in origin
Niy; cluster as a function of temperature using the present method. Errofrom that found if it is assumed that the single particle is not
bars are indicated by the short straight vertical lines. a strictly single domain particle as, for example, in the study
of Vargaset al3® Nevertheless, the present approach can be

the latter accurately describes the small cluster results. Thgasny generahzeld. to the stgdy of magnetlc proper.'ues of
lusters that exhibit atoms with noncollinear magnetic mo-

is a significant conclusion since for systems consisting of ‘ I
very large number of atoms one needs to use classical poteW—en S as well.
tials as the TBMD method becomes computationally prohibi-
tive.

< W(T) > (Bohr magnetons)
[y

IV. CONCLUSION

In agreement with Ref. 23, we find that the calculated = We have presented an efficient generalization of our
specific heaty of Ni;5 (see Fig. 2 exhibits a resonancelike zero-temperature TBMD method, which enables a quantum
peak at the transition temperature. It is also worth pointingnechanical approach for studying structural, electronic, and
out that in Ref. 23, constant-enerdynicrocanonical en- magnetic properties of transition metal clusters as a function
semblg simulations were performed, while in the presentof temperature and a canonical ensemble statistics. An appli-
work we use the constant-temperatgcanonical ensemble cation of the method to the Ni cluster shows significant
simulations. Classical potentials have also been used to studijfferences from works reported using classical potentials
the Niyyg cluster with the transition temperature predicted toand microcanonical ensemble statistics. We have shown that
be 1400 K?° these differences may be attributed to the inadequecy of the

Finally, we present our results for the magnetic momentexisting classical potentials to describe the known properties
w(T), of the Nij cluster using our method. In Fig. 5, we of small Ni clusters. We have also shown that when this
show the temperature dependence.6T) for Tup to 700 K. factor is accounted for properly, the two methods can give
For each temperature, the magnetic moment shown in Fig. gesults in good agreement with each other. The incorporation
is the statistical time average of the magnetic moment peof the temperature shows interesting variations of many
cluster atom. The standard deviation is found to be a functiophysical properties as a function of temperature as, for ex-
of temperature; it is nearly zero for temperatures less thaample, structural and magnetic phase changes. Of particular
100 K and gets larger as the temperature increases, reachiigerest in the present work appears to be the results for the
its maximum value(~ *=5%) for T>T,.ns- AS Seen in the magnetic moment of the Nj cluster as a function of tem-
figure, the magnetic moment does not change appreciablyerature that indicate relatively large deviations of the aver-
with temperature, remaining within the range specified byage value of the magnetic moment. These were attributed to
the calculated error bars. It is worth noting that fér the existence of various isomers of;hthat can be reached
>Tyans the magnetic moment starts decreasing, slightiyby thermal activation.
reaching a minimuni{=5% lower than its zero temperature
valug and stays at this valu@with a tendency to increase ACKNOWLEDGMENTS
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