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1. Introduction

Undoubtedly, graphene is one of the most studied materials 
in recent years. This is due to its exotic properties, like for 
instance its high carrier mobility [1] and high thermal conduc-
tivity [2–4] at room temperature, its high strength [5, 6], etc 
which makes graphene one of the most interesting materials 
for future nanoelectronic and nanomechanic applications. 
Following graphene, several two dimensional (2D) materials 
have also gained interest, exhibiting interesting mechanical 
[7–14] and electronic properties. The world of 2D materials 
that have been brought to the center of attention recently [15, 
16] includes several transition metal dichalcogenides [10, 17], 

(like for instance MoS2 or WS2), hexagonal BN (h-BN) [8, 9, 
18, 19], Si2BN [14, 20], SinBm [21–23], SiX and XSi3 (X  =  B, 
C, N, Al, P) [24], CdS [25], AlN [19, 26–28], SiC, InN and 
GaN [19], C2F [9], silicene [11, 12, 29, 30], germanene [30], 
siligene (SiGe) [31], phosphorene [13, 32], as well as several 
graphene allotropes, like pentaheptites and octagraphene [5, 
33], or other carbon 2D allotropes, like pentagraphene [34], 
graphyne, graphydine [33, 35], or graphene-based derivatives, 
like graphane and graphone [35, 36] etc.

A special class of these materials are those which are 
entirely planar, like for instance several graphene allotropes 
(pentaheptites, octagraphene, etc) [5, 33, 37], as well as h-BN 
[18], Si2BN [14, 20], AlN, SiC, SinBm [21–23], CdS [25], XSi3 
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with X  =  B, C, Al [24] etc. In this work, we present a method 
for the study of the mechanical response, of these materials, 
e.g. bond stretching and angle bending deformations, in the 
presence of uniaxial tensile strain, providing analytic expres-
sions for these deformations along any strain direction. Our 
method can be generalized including any other strain condi-
tion (i.e. not only uniaxial strain) and is based on molecular 
mechanics assuming two different versions of the so called 
stick and spiral model [38], which has been employed pre-
viously for the study of the mechanical properties of carbon 
nanotubes [39–44].

As an example, we apply our method to graphene, pro-
viding analytic expressions for bond length and bond angle 
deformations under tensile strain. We test the accuracy of 
these expressions using results we obtain from ab initio den-
sity functional theory (DFT) calculations. In particular, we 
calculate the structural deformations of graphene under ten-
sile strain along the high symmetry arm chair and zig–zag 
directions, as well as two other randomly selected directions, 
which are perpendicular to each other. According to our find-
ings, the original stick and spiral model is not sufficient to pro-
vide an accurate description of the mechanical deformations 
of graphene under tensile strain in the elastic regime, since the 
DFT results can not be reproduced accurately by the analytic 
expressions provided by that model. However, due to the cou-
pling between the bond stretching and angle bending terms, 
which is inherently included in the modified stick and spiral 
model, this modified model provides a quite accurate descrip-
tion. Moreover, fitting these analytic expressions to the DFT 
results we calculate the force constants for bond stretching 
and angle bond bending for graphene, thus allowing the pre-
diction of the mechanical response of graphene in the elastic 
regime for strain on any direction.

2. The deformation energy

In molecular mechanics approach the deformation energy U 
is a sum of energy contributions from different deformation 
modes [38]. In particular, U is written as

= + + + + +ω τU U U U U U U ,s b vdw e (1)

where Us, Ub, ωU , τU , Uvdw and Ue correspond to the energy 
contributions from bond stretching, bond angle bending, bond 
inversion, bond angle torsion, Van der Walls interactions and 

electrostatic interactions, respectively. Since tensile strain in 
a 2D planar structure is in-plane strain, the terms ωU  and τU  
vanish. Moreover, since there are no interactions between dif-
ferent sheets of those 2D structures, the terms Uvdw and Ue 
also vanish. Thus, the deformation energy becomes

= +U U U .s b (2)

Us and Ub may be expressed in several different ways (see 
for instance [45–47]). However, the simplest way is to be 
expressed as a sum of harmonic terms constituting the so-
called stick and spiral model.

According to the stick and spiral model, the deformation 
energy per unit cell is written as a sum of energy contributions 
from each bond length and bond angle deformation. Each of 
these contributions has a quadratic dependence on the corre-
sponding deformation, i.e. it is either of the form δk l1 2 s

2( / )  

(for bond stretching), or δφk1 2 b ij
2( / )  (for bond-angle bending), 

where ks and kb are the corresponding force constants, and δl 
and δφ the bond length and bond-angle deformations for each 
specific bond and bond angle, respectively. Thus, the defor-
mation energy per unit cell is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑δ δφ= +U k l k

1

2

1

2
,

i
s i i

j
b ij ij,

2
,

2
 (3)

where i counts all the bonds inside the unit cell and j counts 
the bonds which form bond angles with bond i. The 1/2 factor 
of the second sum is to avoid double counting of the bonds.

In the description provided by the stick and spiral model, 
bond stretching and bond angle bending are not coupled. The 
energy provided by (3) does not have any terms mixing these 
deformations. In addition, as we will see later, in the minimi-
zation of the deformation energy under constant strain these 
deformations remain decoupled. More specifically, one arrives 
at two independent systems of analytic equations  one for 
stretching and one for bending. A more accurate description 
would include a coupling term between these deformations. 
This can be achieved by introducing extra terms describing 
the stretching of second nearest neighbor interatomic dis-
tances. In the present work, we study both cases.

For a planar structure with three-fold coordinated atoms, 
there are three bonds and three bond angles per atom (see 
figure 1(a)). If we label i, j1 and j2 the bonds of atom A and i, j3 
and j4 those of atom B, (the two atoms share the bond i), then 
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Figure 1. (a) Bond i of atoms A and B. Atom A forms the bonds i, j1 and j2 with its neighboring atoms and atom B forms the bonds i, j3 
and j4, (b) Bond and angle deformations under uniaxial strain, (c) Relation between θi and φij.
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the index j of (3) takes the values j1, j2, j3 and j4. Moreover, 
since the structure is planar, and all atoms remain in the plane 
under tensile strain

φ φ φ φ φ φ π+ + = + + = 2 ,ij ij j j ij ij j j1 2 1 2 3 4 3 4 (4)

where φij1
, φij2

, φ j j1 2
 are the bond angles of atom A and φij3

, φij4
, 

φ j j3 4
 the bond angles of atom B. Consequently,

δφ δφ δφ δφ δφ δφ+ + = + + = 0.ij ij j j ij ij j j1 2 1 2 3 4 3 4 (5)

In the present work we study structures with only 3-fold coor-
dinated atoms, since this is the most common case. However, 
the generalization of our method to structures with n-fold 
coordinated atoms, with ≠n 3, is obvious.

Due to symmetry reasons (if any), several bonds length 
deformations (as well as bond angle deformations) may be 
equivalent to each other under specific strain conditions. In 
that case, U can be written as a function of only the inde-
pendent bond length and bond angle deformations per unit 
cell, and (3) can be rewritten as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑∑δ δφ= +U n k l m k

1

2

1

2
,

i
i s i i

i j
ij b ij ij,

2
,

2
 (6)

where ni is the number of equivalent bond length deforma-
tions of type i and mij the number of equivalent bond angle 
deformations formed by the bonds which have independent 
bond length deformations of type i and j. i runs over the inde-
pendent bond deformations only.

Under uniaxial strain, the deformation energy and the 
corre sponding deformations δli and δφij at the strained equilib-
rium can be found from the minimization of the deformation 
energy subject to constrains describing the strain condition. 
These constraints can be incorporated using the Lagrange 
multipliers technique. For constant uniaxial tensile strain ε 
there is only one constraint described by ε δ= L L0/ , where L0 
is a length along the strain direction and δL the elongation of 
L0 upon that strain, which should be expressed as a function 
of the independent variables δli and δφij. Thus, the function 
which should be minimized becomes

λ ε δΛ = + −U L L ,0( / ) (7)

with λ the corresponding Lagrange multiplier. Obviously, 
for different strain conditions, different constrains will apply, 
which can be incorporated in (7) using the corresponding 
Lagrange multipliers. Thus, our method can be easily gener-
alized to describe the structural deformations of a 2D planar 
structure, not only under uniaxial strain, but under any strain 
condition.

In order to minimize Λ in (7), with respect to the bond 
stretching and angle bending deformations, one needs to 
express δL in terms of these deformations.

2.1. δL as a function of bond deformations

Without loss of generality, we may assume that the structure 
is periodic. A non-periodic (i.e. amorphous) structure could 
be considered as periodic with infinite periodicity. For con-
venience, let us assume that the unit cell vectors for ε = 0 

are =a ia0 0
ˆ and = +b i jb b ˆx y0 0 0

ˆ , as shown in figure  2. 
Let us apply tensile strain by stretching the structure along 
the line connecting two equivalent atoms in different unit 
cells. The vector connecting those two atoms, (which deter-
mine the strain direction), is = +L a bn m0 0 0, where n and 
m are integers. Under the applied strain the vector L0 will 
be deformed to L, so that the vectors L and L0 are parallel, 
i.e. L0 will be just elongated. The unit cell vectors a0 and 
b0 will be also deformed to a and b, respectively, so that 
= + = +L a b L a bn m n m0 0 0∥ .
If L0 and δ= +L L L0  are the lengths of the vec-

tors L0 and L, respectively, and ε̂ is the unit vector 
directed along the strain direction (i.e. ˆ ( ) /ε = +a bn m0 0  

+ + a bn a m b nm22
0
2 2

0
2

0 0
1 2( ) / , where = +b b bx y0 0

2
0

2 1 2( ) / ),  
then ε= + =a bL n mˆ( )  ( ˆ ) ( ˆ )ε ε+a bn m  and ˆ(ε= +aL n0 0  

) ( ˆ ) ( ˆ )ε ε= +b a bm n m0 0 0 , i.e. L (L0) depend on the projections 
of a, and b (a0 and b0) on the strain direction.

The vectors a0 and b0 can be expressed as a sum of bond vec-
tors r ai0  and r bi0 , respectively, (i  =  1, 2, 3, ...), which correspond 
to specific bonds of the undeformed structure, constituting a 
crooked line connecting the tails of a0 and b0 with their heads, 
i.e. = ∑a ri ai0 0  and = ∑b ri bi0 0 . Thus, if the bond vectors r ai0  
and r bi0  are deformed under strain into rai and rbi, respectively, 
then = ∑a ri ai and = ∑b ri bi. This is shown schematically in 
figure 2, where the sum of the red colored vectors, (denoted 
as rai, i  =  1, 2, 3, ...), constitute a, while the sum of the green 
colored vectors, (denoted as rbi, i  =  1, 2, 3, ...), constitute b. 
Obviously, the corresponding sums of the projections of rai and 
rbi along the strain direction equals the projection of a and b, 
respectively, along the same direction. These projections of rai 
and rbi are shown as black arrows in figure 2, and should be 
considered as positive or negative. Thus,

∑ ∑ε ε ε ε
δ = −
= − + −r r r r

L L L

n m ,
i

ai ai
i

bi bi

0

0 0( ˆ ˆ ) ( ˆ ˆ ) (8)
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Figure 2. Periodic planar structure with 3-fold coordinated atoms 
strained along the strain direction ε̂ (colored in red). The unit cell 
vectors (colored in blue) are a and b. The vector sum of the vectors 
rai (rbi) corresponding to the red (green) colored bonds, constitute 
the unit cell vector a (b). The projection of those bond vectors along 
the strain direction are shown with black arrows along the strain 
direction.
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i.e. δL can be expressed as a function of the differences of the 
projections of the r ai0 , rai and the r bi0 , rbi vectors, along the 
strain direction. We should note that, although the vectors, a, 
b, a0, b0 are not uniquely expressed in terms of bond vectors, 
the sums of the projections are unique and one could always 
choose optimal paths (e.g. of minimal length) of bond vec-
tors. Let us now see how the differences of those projections 
depend on the bond deformations.

2.2. The strain constrain

Let us assume that strain along a specific direction is applied to a 
bond, as shown in figure 1(b). For convenience we have assumed 
that the strain direction coincides with the x-axis direction. 
Let us further assume that at equilibrium for ε = 0, the bond 
length and the angle between the bond and the strain direction 
are l0 and θ0, and under strain they become θ δθ+0  and δ+l l0 , 
respectively. If the projections of the bond along and normal 
to the strain direction for ε = 0 are x0 and y0, respectively, and 
under strain they are δ+x x0  and δ+y y0 , respectively, then 

θ=x l cos0 0 0, θ=y l sin0 0 0, δ δ θ δθ+ = + +x x l l cos0 0 0( ) ( ) 
and δ δ θ δθ+ = + +y y l l sin0 0 0( ) ( ).

Thus the projection of the bond deformation along the 
strain direction is

δ δ θ θ δθ≈ −x l lcos sin0 0 0 (9)

and the projection normal to the strain direction is

δ δ θ θ δθ≈ +y l lsin cos .0 0 0 (10)

According to (9), the projection δx of the deformation of 
r ai0  along the strain direction ε̂ is

ε εδ
δ θ θ δθ

= −
= −

r rx
l lcos sin ,

ai ai

ai ai ai ai ai

0

0 0 0

ˆ ˆ
 

(11)

where =| |rl ai ai0 0 , θ ai0  is the angle between ra i0  and the strain 
direction (i.e. εθ = r lcos ai ai ai0 0 0ˆ / ), and δlai and δθai are the 
deformations of l0ai and θ ai0 , respectively. Changing the 
index ‘a’ with ‘b’, we get the corresponding relation for r bi0 . 
Consequently,

( )

( )

∑

∑

δ δ θ θ δθ

δ θ θ δθ

= −

+ −

L n l l

m l l

cos sin

cos sin .
i

ai ai ai ai ai

i
bi bi bi bi bi

0 0 0

0 0 0
 

(12)

As a function of the projections of independently deformed 
bonds, this equation is written as

∑δ δ θ θ δθ= −L q l lcos sin
i

i i i i i i0 0 0( ) (13)

where here index i is the same as in (6), (i.e. it runs over the 
bond vectors of the independently deformed bonds) and qi 
is the number of the bond vectors r a0  and r b0  with equivalent 
deformations, which contribute to the sums in (8). Obviously, 
if ri does not contribute to the sums in (8), then qi  =  0, and if 
−ri contributes to the sums in (8) instead of ri, then the angle 
θ i0  of the above equation should be replaced by θ π+i0 , which 
changes the sign of both θcos i0  and θsin i0 . This sign change 
can be absorbed in qi, and therefore, the constrain of our case 
has the form

∑ε δ θ θ δθ− − =q l l Lcos sin 0.
i

i i i i i i0 0 0 0( )/ (14)

As one can see, the deformation energy in (6) is expressed 
as a function of the deformations δli and δφij, while the con-
strain in (14) is expressed as a function of δli and δθi. As we 
show in the appendix A,

φ π δφ δθ δθ∀ ∈ = −0, , ,ij ij j i
2 2( ] ( ) (15)

and therefore, the function Λ in (7), which has to be mini-
mized, can be rewritten as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

∑ ∑

∑

δ δθ λ

δ δθ δθ

λ ε δ θ θ δθ

Λ = Λ

= + −

+ − −

l

n k l m k

q l l L

, ,

1

2

1

2

cos sin ,

i i

i
i s i i

j
ij b ij i j

i
i i i i i i

,
2

,
2

0 0 0 0

({ } { } )

( )

( )/

 

(16)

where by δli{ } and δθi{ } we denote all the δli and δθi inde-
pendent variables, respectively, (i.e. δ δ δ= …l l l, ,i 1 2{ }  and 
δθ δθ δθ= …, ,i 1 2{ } ), and therefore Λ becomes a function of 

only δli, δθi and λ.
It is worth noting that the projection of δ = −L L L0 normal 

to the strain direction should be zero, i.e. (according to (10))

∑ δ θ θ δθ+ =q l lsin cos 0.
i

i i i i i i0 0 0( ) (17)

As we will see, minimizing (16) we will be able to calculate 
the differences of δθi for the same atom, (i.e. the bond angle 
deformations δφij), but not the deformations δθi themselves, 
which give the direction of the bonds with respect to the strain 
direction. However, using (17) and the results of the minimi-
zation in (16), the deformations δθi can be also determined 
and we can have a complete figure for the deformations of the 
structure.

3. Minimization of li ij({ } { } )θ λΛ δ δ, ,

The steady state of Λ occurs at the specific δli and δθi values 
for which

δ δθ∂Λ ∂ = ∂Λ ∂ =l 0 and 0.i i/ / (18)

δli appears only in one term of U, namely in δk l1 2 s i i,
2( / ) . 

Consequently, from δ∂Λ ∂ =l 0i/  we obtain

δ
λ θ

=l
L

q

n k

cos
.i

i

i

i

s i0

0

,
 (19)

On the other hand, δθi appears in 4 terms of U (see figure 1(a)), 
namely in δθ δθ−m kij b ij i j,

2
1 1 1

( )  and δθ δθ−m kij b ij i j,
2

2 2 2
( )  for the 

angles δφij1
 and δφij2

 of atom A, and δθ δθ−m kij b ij i j,
2

3 3 3
( )  and 

δθ δθ−m kij b ij i j,
2

4 4 4
( )  for the angles δφij3

 and δφij4
 of atom B. 

From δθ∂Λ ∂ = 0i/  we obtain the linear system

∑ δθ δθ λ θ− = −
=

m k q l L
1

2
sin .

k
ij b ij i j i i i

1

4

, 0 0 0k k k
( ) / (20)
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Substituting the expressions for δθi obtained from (20) and 
the expressions for δli shown in (19) into (14), we obtain an 
equation  for λ. Solving this equation  with respect to λ, we 
obtain λ as a function of the strain ε and the strain angle θ0.

As we show in the appendix B,

λε=U 2,min / (21)

where Umin is the minimum of U subject to the constrain 
ε δ= L L0/ . Thus, if λ is determined, then Umin can also be 
determined. Equation (21) gives a physical meaning in the 
Lagrange multiplier λ and minimizes the effort to find a con-
venient expression for Umin as a function of ks,i and kb,ij for 
strain ε.

4. Including second nearest neighbor stretching 
terms

As we can see from (19) and (20), the original stick and spiral 
model, expressed utilizing (6), does not provide any coupling 
between δli and δφij. However, as already mentioned, including 
energy terms which describe stretching from second nearest 
neighbor interactions, we obtain a more accurate model, since 
it provides coupling between δli and δφij.

Let us assume that atoms B and C are second nearest neigh-
bors, forming bonds i and j, respectively, with atom A. If r i0  and 
r j0  are the bond vectors of bonds i and j, at equilibrium for ε = 0, 
then, depending on the orientation of r i0  and r j0 , the interatomic 
distance r0ij between atoms B and C is either the magnitude of 
the vector −r rj i0 0  (if both heads or tails of r i0  and r j0  are at the 
position of atom A), or the vector +r rj i0 0  (if the tail of the one 
and the head of the other are at the position of atom A).

If the interatomic distance r0ij is deformed upon strain by 
δrij, then the deformation energy per unit cell U is

∑∑ δ= + = +U U U U p k r1 2 1 2 ,
i j

ij s ij ij1 2 1 ,
2( / ) ( / ) (22)

where U1 is the deformation energy of the original stick and 
spiral model in (6) and U2 describes the contribution due to 
stretching deformations of second nearest neighbor inter-
atomic distances. The factor 1/2 in the second term of (22) is 
inserted to avoid double counting, the notation i and j is the 
same as in (6) and pij is the number of the equivalent second 
nearest neighbor interatomic distances in the unit cell with 
a δrij deformation. Obviously, =p mij ij, because each spe-
cific bond angle φij corresponds to a specific second nearest 
neighbor interatomic distance rij.

Consequently, for the atomic arrangement shown in 
figure 1(a), (19) and (20) should be replaced by

∑δ δ
δ

δ
λ θ+

∂

∂
=

=

n k l m k r
r

l
q L

1

2
cosi s i i

k
ij s ij ij

ij

i
i i,

1

4

, 0 0k k k

k / (23)

and

⎡
⎣
⎢

⎤
⎦
⎥∑ δθ δθ δ

δ

δθ
λ θ

− +
∂

∂
= −
=

m k k r
r

q l L

1

2

sin ,
k

ij b ij i j s ij ij
ij

i

i i i

1

4

, ,

0 0 0

k k k k k

k( )

/
 

(24)

which have to be solved.
As we show in the appendix C,

∓

∓

δ θ θ δ

θ θ δ

θ θ δθ δθ

= −

+ −

± − −

r r l l l

l l l

l l

cos

cos

sin ,

ij ij i j i j i

j i j i j

i j i j i j

0 0 0 0 0

0 0 0 0

0 0 0 0

( )
( )

( )

( )
( )( )

 

(25)

and

∓δ δ θ θ∂ ∂ = −r l l l rcos ,ij i i j i j ij0 0 0 0 0/ [ ( )] / (26)

/ ( )/δ δθ θ θ∂ ∂ =± −r l l rsin .ij i i j i j ij0 0 0 0 0 (27)

The upper signs, (wherever  ±  and ∓ appear), occur when ri 
and rj have their tails (or their heads) at the position of the 
same atom and the lower signs, when the tail of the one and 
the head of the other are at the position of the same atom, as 
explained in appendix C.

Obviously, if ks,ij  =  0, then U2  =  0 and the modified stick 
and spiral model reduces to the original one. Thus, we can 
treat both models by solving the system of (23) and (24) of the 
modified model. Then, by setting ks,ij  =  0 in these solutions, we 
directly get the solutions of (19) and (20) of the original model. 
This is the subject of the next section specified for graphene.

5. Application to graphene

Below, as well as in the appendices, whenever the indices ′i , 
′j  and ′k  are used, =′ ′ ′i j k, , 1, 2, 3( ) ( ), or (2, 3, 1), or (3, 1, 2).

5.1. The energy

Figure 3 shows the unit cell of graphene, which is defined 

by the lattice vectors = +a i j a3 2 3 0( / )( ˆ ˆ )  and 

= −b i j a3 2 3 0( / )( ˆ ˆ ) , where a0 is the bond length of gra-

phene. In this figure, A and B are the 2 atoms of the lattice 
base. As one can see, there are 3 bonds per unit cell, which can 
be deformed independently, corresponding to the bond vec-
tors r1, r2 and r3 of atom A, or the bond vectors =r r4 1, =r r5 2 
and =r r6 3 of atom B. Consequently, in (6) and (22), ni  =  1 
(i  =  1, 2, 3). Moreover, as one can see in figure 3, there are 
six bond angles (with respect to the strain direction) θi per 

θ0

r1

r2

θ1

θ2
θ3

θ −π2
θ −π3

π+θ1

r =r5        2

r =r4        1

r =r3        6

a

b

stra
in directio

n

x axisA
B

stra
in directio

n

Figure 3. Graphene unit cell. The lattice vectors are = −a r r1 3 and 
= −b r r1 2. The bond vectors for atom A are r1, r2 and r3, while for 

atom B they are −r1, −r2 and −r3. The bond angles θi with respect to 
the strain direction are also shown.
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unit cell. Three of them correspond to atom A and three to 
atom B. Since the bond vectors of atom A and B are the same, 
the angles θi corresponding to the bonds of atom A are the 
same with those corresponding to atom B. Consequently, only 
three of those six angles can be considered as independently 
deformed, and mij  =  2. Moreover, due to symmetry reasons, 
=k ks i s, 1, =k ks ij s, 2 and =k kb ij b, .
Thus, the energy per unit cell in the original stick and spiral 

model (according to (6)) is

δ δ δ δθ δθ

δθ δθ δθ δθ

= = + + + −

+ − + −

′U U k l l l k a
1

2
,

s b1 1 1
2

2
2

3
2

0
2

1 2
2

2 3
2

3 1
2

( ) [( )

( ) ( ) ]
 

(28)

where =′k k ab b 0
2/ .

In the unit cell of graphene shown in figure  3, there are 
six second nearest neighbor interatomic distances, namely r12, 
r23, r31, r45, r56 and r64, where =r r45 12, =r r56 23 and =r r64 31. 
Consequently, there are only three second nearest neighbor 
interatomic distances, which can be deformed independently 
and U2 in (22) is

δ δ δ= + +U k r r r ,s2 2 1,2
2

2,3
2

3,1
2( ) (29)

where δrij are given by (25), and therefore, the energy per 
atom U in the modified model is = +U U U1 2.

5.2. The strain constrain

As a function of the independently deformed bond vectors ri, 
the unit cell vectors a and b can be written as

= − = −a r r b r rand .3 2 3 1 (30)

Thus, if = +L a bn m0  defines the strain direction, then 
( )= + − −L r r rn m n m0 3 2 1, and consequently the qis in (14) 

are q3  =  n  +  m, q2  =  −n and q1  =  −m. As we show in the 
appendix D,

θ=q L a2 3 cos ,i i0 0 0/( ) (31)

where

θ π θ= − =i i2 3 , 1, 2, 3,i0 0/ (32)

and consequently, (as shown in the same appendix), the strain 
constraint (14) takes the form

∑ ∑ε θ δ θ δθ δθ= − −
= =a

l
2

3
cos

1

3
sin 2 ,

j
j j

j
j j i

0 1

3
2

0
1

3

0 ( ) (33)

while (17) becomes

⎛
⎝
⎜

⎞
⎠
⎟∑δθ θ δθ δθ

δ
θ= − −

=

l

a

2

3
cos

3
sin 2 ,i

j
j i j

j
j

1

3
2

0
0

0( ) (34)

respectively, where i  =  1, or 2, or 3.

5.3. Solving for the deformations δli and δθi

As we show in the appendix E, (23) and (24) give

( / ) ( ) ( )

( / )

⎡⎣ ⎤⎦δ δ δ δθ δθ

δ λ θ

+ + + −

+ =

′ ′ ′ ′ ′

′ ′

k l l l a

k l a

3 2 3 2

2 3 cos

s i j k j k

s i i

2 0

1 0
2

0

 
(35)

and

( / ) [( ) ( )]

( / ) ( ) ( / )

δθ δθ δθ δθ

δ δ λ θ

+ − + −

+ − = −

′ ′ ′ ′ ′

′ ′ ′

k k a

a k l l

4

3 4 6 sin 2 .

b s i j i k

s k j i

2 0
2

0 2 0

 (36)

The solution of these equations, (as shown in the same 
appendix), is of the form

δ ξ θ ξ= +′ ′l a3 cosi i0 1
2

0 2( ) (37)

and

δθ δθ ξ θ θ− = −′ sin 2 sin 2 ,j i i j3 0 0( ) (38)

where ξ λ=′ ′ ′k a K8 9b1 0
2/( ), ξ λ= − +′ ′ ′k k k a K k18 9s s b s2 2 1 0

2
1( )/[ (  

k6 s2)], ξ λ=′ ′k a K2 9s3 1 0
2/( ) and = + +′ ′K k k k k k4 6s s s s b1 2 1 2( ) . 

For these expressions of δli and δθ δθ−j i, equations (33) and 
(34) yield

ε ξ ξ ξ δθ ξ θ= + + = −′ ′ ′ ′9 12 2 4 and sin 2 ,i i1 2 3 3 0( )/ (39)

(see appendix E for details). Consequently,

ε λ= +′K a K k k9 6 ,s s0 0
2

1 2/[ ( )] (40)

where = + + + ′K k k k k k k9 18 3s s s s s b0 1
2

1 2 1 2( )  and therefore,

λ ε= +′a K k k K9 6 .s s0
2

1 2 0( )/ (41)

Thus,

δ λ ε δθ δθ µ ε= − =l a3 , and ,i i j i ij0 (42)

where

λ ξ θ ξ= +cos ,i i1
2

0 2 (43)

µ µ ξ θ θ= − = −sin 2 sin 2ij ji i j3 0 0( ) (44)

and

ξ = +′k k k K8 6 ,b s s1 1 2 0( )/ (45)

ξ = − ′k k k K18 ,s s b2 2 1 0( )/ (46)

ξ = +k k k K2 6 .s s s3 1 1 2 0( )/ (47)

Using (H.13), equation (44) gives

µ µ ξ θ= − = −′ ′ ′ ′ ′3 cos 2 .i j j i k3 0 (48)

Obviously, (39) leads to

ξ ξ ξ δθ ξ θ ε+ + = = −9 12 2 4 and sin 2 .i i1 2 3 3 0( ) (49)

The former shows that ξ1, ξ2 and ξ3 are not independent.
Moreover, according to the relations between φij and θi 

shown in appendix A, the relations between the φij and θi 
angles of graphene, shown in figure 3, are

φ θ θ φ θ θ φ π θ θ= − = − = + −, and 2 .21 2 1 32 3 2 13 1 3
 (50)
Thus, the bond angle deformations δφij are

δφ δφ δθ δθ= = −′ ′ ′ ′ ′ ′.i j j i j i (51)

Due to the symmetry of the unit cell, the results we find for 
strain angle θ0, will be the same for strain angles π θ±n 3 0/ , 
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n  =  0, 1, 2, 3, 4, 5. Thus, without loss of generality, we may 
assume that θ π0 60⩽ ⩽ / .

5.4. Energy, Young’s modulus and Poisson’s ratio

According to (21), the deformation energy per unit cell is 
λε=U 2/ . For graphene, λ is given by (41), and consequently,

ε=U a A3 ,0
2( ) (52)

where

= + + + ′A k k k k k k k K6 4 6 2 .s s s s s s b1 2 1 2 1 2 0( )( ( ) )/( ) (53)

As for the Young’s modulus E, it is easy to show that 
ε=E U V2 2/( ), where V is the volume of the unit cell 

( =V a d3 3 20
2

0/ ) and d0 is the hypothetical depth of the gra-
phene layer, which is assumed to be equal to the graphite 
interlayer separation ( =d 3.34 Å0   ), in order to direct com-
pare the Young’s modulus values of two dimensional (2D) 
carbon structures with the known values for three dimen-
sional (3D) systems, like graphite [5]. Thus, for the above 
expression for A,

/=E A d4 3 .0 (54)

Moreover, in appendix F we show that the Poisson’s ratio 
ν is

ν ξ ξ ξ= − − +3 4 3 2,1 2 3/ / (55)

which for the ξ1, ξ2 and ξ3 expressions of (45)–(47) becomes

ν = + − − −′ ′k k k k k k k K6 6 3 18 .s s s b s s b1 2 1 2 1 0[( )( ) ( )]/ (56)

As one can see from the above expressions, U, E and ν are 
independent of the strain angle θ0, and consequently, graphene 
is isotropic.

5.5. Relations between ks1, ks2 and ′kb with ξ1 , ξ2 , ξ3 and A

One would have thought that (45)–(47), which form a ×3 3 
system of equations, would provide solutions for ks1, ks2 and 
′kb as functions of ξ1, ξ2 and ξ3. However, as shown in (49), ξ1, ξ2 

and ξ3 are not independent, and therefore, these equations can 
not provide relations for ks1, ks2 and ′kb as functions of ξ1, ξ2 
and ξ3. On the other hand, A, which is independent of ξ1, ξ2 and 
ξ3, is also a function of ks1, ks2 and ′kb. Therefore, ks1, ks2 and ′kb 
could be written as functions of ξ1, ξ2, ξ3 and A.

As we show in the appendix G,

ξ
ξ

ξ
ξ ξ

= =
−
− +

′k
k

k

k4
and

1 3
b

s

s

s1

1

3

2

1

2

3 2
 (57)

and

⎛

⎝
⎜

⎞

⎠
⎟

ξ ξ
ξ ξ ξ ξ

=
− +
− − +

k A4
1 3

1 3

1

2
,s1

3 2

3 2 1 2
 (58)

⎛

⎝
⎜

⎞

⎠
⎟

ξ
ξ ξ ξ ξ

= −
− − +

k A4
1 3

1

2
s2

2

3 2 1 2
 (59)

and

⎛

⎝
⎜

⎞

⎠
⎟

ξ
ξ

ξ ξ
ξ ξ ξ ξ

=
− +
− − +

′k A
1 3

1 3

1

2
.b

1

3

3 2

3 2 1 2
 (60)

5.6. The original stick and spiral model

The corresponding results for the original stick and spiral 
model (i.e. not including second nearest neighbor interactions 
for stretching) can be obtained by setting ks2  =  0. Thus, the 
solution of (19) and (20) have again the form of (42), with λi 
and µij given again by (43) and (44), but now

ξ ξ ξ=
+

= =
+

′
′ ′

k

k k

k

k k

8

18
, 0 and

2

18
.b

s b

s

s b
1

1
2 3

1

1
 (61)

The first of (49) becomes ξ ξ+ =9 2 41 3 , while the second 
remains the same. The energy and the Young’s modulus are 
again given by (52) and (54), respectively, but now

= +′ ′A k k k k2 18 ,s b s b1 1/( ) (62)

and the Poisson’s ratio is

ν ξ ξ= − = − + ′k k k k2 3 4 6 18 .s s s b3 1 1 2 1( )/ ( )/( ) (63)

Moreover, the relations between ks1 and ′kb, with ξ1, ξ3 and 
A are

ξ ξ= =′k A k A4 and .s b1 1 3/ / (64)

6. Force constants from DFT results  
and discussion

6.1. Details of our DFT calculations

For our DFT calculations we used the Quantum Espresso [48] 
code at the level of GGA/PBE functional [49] and adopted 
an ultra-soft pseudopotential for carbon [50, 51]. The two 
unit cells are shown in figure 4. For the rectangular unit cell 
of figure 4(a) we used a ×12 12 k-point mesh, while for the 
unit cell of figure 4(b) a ×12 6 (12 along the small real space 
direction). In addition, we used cut-offs 50 and 500 Ryd for 
the wave functions and charge density, respectively, and occu-
pation smearing of 5 mRyd. As in [5], for non zero uniaxial 
strain, the unit cells were extended in the strain direction while 
all the atoms in the cell as well as the vertical cell dimension 
were fully relaxed.

6.2. Results

As a first step, we want to calculate the parameters λi and 
µij, which depend on the strain direction, as well as A, which 
is independent. To calculate the λi and µij values, we fit the 
deformations δli and δφij in the strain range [−0.05, 0.05] 
to a quadratic form, considering that the coefficients of 
the linear term represent the corresponding λa3 i0  and µij 
values in (42), respectively. For the calculation of A, we fit 
the corre sponding energy per atom values to a fourth order 
polynomial, considering that a A3 0

2( )  is the coefficient of the 
quadratic term.
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Although in real world, graphene sheet bends for negative 
strains, computationally it is possible to perform calculations 
for negative strains without bending of the structure. Fitting a 
curve to the deformations δli, δφij and U for both negative and 
the positive strain values, we expect a better estimation of λi, 
µij and A values, than using an extrapolation of δli, δφij and U 
at ε = 0, which can be obtained from a fitting of the deforma-
tion values of δli, δφij and U for positive strain values only.

Using the DFT method presented above, we calculated the 
deformations δli and δφij, i, j  =  1, 2, 3, and the deformation 
energy per atom U, for uniaxial strain along the high sym-
metry arm chair and zig–zag directions, as well as the direc-
tions along the vectors = +L a b2  and = −⊥L a b4 5 , which 
are perpendicular to each other, and randomly selected. We 
increase the strain gradually with a 0.01 strain step in the 
range between ε = −0.1 and ε = 0.25. The results are pre-
sented in figures 5 and 6, respectively. The fitting functions 
are presented in the supplementary data (stacks.iop.org/
JPhysCM/29/175401/mmedia).

The values of λi and µij obtained from the fits for the four 
strain directions are presented in table  1, while the corre-
sponding A values are shown in the legends of figure  6. 

Although A was expected to be independent of the strain 
direction, the values of A shown in figure 6 does not seem to 
agree with this prediction. However, this discrepancy is due to 

x−axis

L

L

a

b

x−axis

a

bL

L

(a) (b)

Figure 4. Rectangular unit cells and strain directions used in our calculations. Unit cell atoms are shown with blue color. (a) For strain 
along the arm chair ( = +L a b) and the zig–zag ( = −⊥L a b) direction, and (b) for strain along the direction of the vectors = +L a b2  and 
= −⊥L a b4 5 .
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Figure 5. (a) Bond length deformations δli and (b) bond angle deformations δφij as a function of strain ε, upon stretching along the 
directions defined by the vectors = +L a bn m . n  =  1 and m  =  1 corresponds to the arm chair direction. n  =  1 and m  =  −1 corresponds to 
the zig–zag direction.
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numerical errors introduced from the different unit cells used. 
The total energy per atom difference between the equilibrium 
graphene geometries at ε = 0 obtained using the two unit cells 
of figure 4 is × −2.3 10 4 eV/atom. As one can show, this dif-
ference is enough to produce such a discrepancy in A, (i.e. of 
the order of − −

10 eV Å3 2    ). It is worth noting, however, that the 
difference between the two A values, corresponding to the two 
perpendicular strain directions of the same unit cell, is of the 
order of − −

10 eV Å4 2    . For our calculations we will adopt the 
value =

−
A 3.046 eV Å

2    , which corresponds to an average of 
the obtained values.

The second step is to calculate the values of ξ1, ξ2 and 
ξ3 using the λi and µij values of table  1 and (43) and (44). 
According to these equations, ξ1, ξ2 and ξ3 can be obtained 
using a linear fitting of the λi values as a function of θcos i

2
0  

and the µ− ′ ′ 3i j /  values as a function of θ ′cos 2 k0 . The values 
of λi as a function of θcos i

2
0  and the values of µ− ′ ′ 3i j /  as 

a function of θ ′cos 2 k0 , as well as the corresponding fitting 
lines are shown in figure 7(a). The smoothness of the fitting is 
obvious. These fitting lines are

λ θ= −0.278 912 cos 0.002 272i i
2

0 (65)

and

µ θ= −′ ′ ′0.758 145 3 cos 2 .i j k0 (66)

Thus, ξ = 0.278 9211 , ξ = −0.002 2722  and ξ = 0.758 1453 .  
Using these values, the value of A, and (57)–(60), we 
can calculate the values of ks1, ks2 and ′kb, as well as 
the ratios k ks s2 1/  and ′k kb s1/ . Thus, / =′k k 0.091 975b s1 ,  

=k k 0.009 6665s s2 1/ , =
−

k 41.972 eV Ås1
1    ,  =k 0.405 72s2  

  −
eV Å

1 and =′
−

k 3.8604 eV Åb
1    . Therefore, roughly speaking 

≈′k k0.1b s1 and ≈k k0.01s s2 1, which qualitatively provides 
the relative strength of each deformation mode. Moreover, 
according to (54) and (55), E  =  1012 GPa and ν = 0.1744, in 
agreement with the results of our previous work [5] obtained 
fitting the stress σ and the the transverse strain ε⊥ values as 
a function of strain, to a third and second order polynomial, 
respectively.

Knowing the ks1, ks2 and ′kb values, we have the ability 
to predict any mechanical property related to the in-
plane deformations of graphene and not only E and ν. 
For instance, the corresponding biaxial isotropic mod-
ulus σ ε=EB / , where σ σ σ= =xx yy and ε ε ε= =xx yy, is 
= ′E A d4 3B 0/ , where for the biaxial isotropic deformation 

ε= ′U a A9 0
2 2. Using (28) and (29), it is easy to show that for 

Table 1. Values of λi, µij and A obtained from the fittings for the four strain directions.

n m θ0 (o) i θ i0  (o) θcos i
2

0 λi θ ′cos 2 i0 µ ′ ′j k

1 −1 90.000 000 3 270.000 000 0.000 000 −0.001 556 −1.000 000 1.315 279
4 −5 100.893 395 3 259.106 605 0.035 714 0.008 633 −0.928 571 1.221 761
2 1 10.893 395 1 109.106 605 0.107 143 0.027 796 −0.785 714 1.032 964
1 1 0.000 000 1, 2 120.000 000 0.250 000 0.066 506 −0.500 000 0.654 704
2 1 10.893 395 2 229.106 605 0.428 571 0.116 258 −0.142 857 0.185 116
4 −5 100.893 395 2 139.106 605 0.571 429 0.156 141 0.142 857 −0.190 542
1 −1 90.000 000 1, 2 30.000 000 0.750 000 0.206 426 0.500 000 −0.657 640
4 −5 100.893 395 1 19.106 605 0.892 857 0.246 905 0.785 714 −1.031 171
2 1 10.893 395 3 349.106 605 0.964 286 0.267 113 0.928 571 −1.218 509
1 1 0.000 000 3 360.000 000 1.000 000 0.277 621 1.000 000 −1.309 408
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Figure 7. (a) λi and µ ′ ′j k  as a function of θcos i
2

0  and θ ′cos 2 i0 , respectively and the fitting lines, according to (43) and (48). (b) Difference 
λ∆ i between the values λi of table 1 and those predicted by fitting equations of λi as a function of θcos i

2
0 .
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biaxial isotropic strain = +′A k k6s s1 2/ . Thus, for graphene, 
EB  =  2459 GPa. A different calculation using the relation 

δ δ δ δ ν ν= + + = + + = +⊥U k l k l l k l U2 2 1 2 2 1u
2 2 2 2/ ( ) / ( / ) (

 ν ν+ 22/ ), or ν ν= + +′A A2 1 22( / ) , yields EB  =  2408 GPa. 
As one can see, the two results are very close to each other.

Obviously, the term U2 corresponding to the stretching of 
the second nearest neighbor interatomic distances is the less 
important energy contribution, but it is not a term that can be 
ignored. If this term is ignored, (which is equivalent to set 
ks2  =  0 or ξ = 02 ), the energy model reduces to the original 
stick and spiral model, which, according to (19), predicts 
that any bond which is perpendicular to the strain direction 
remains undeformed. This, however, is in contrast to what we 
find from our DFT calculations for the l3 bond length under 
uniaxial strain along the zig–zag direction.

Just for comparison, we also calculate the corresponding 
ξ1, ξ3, ks1 and ′kb values obtained from the original stick and 
spiral morel. Obviously, the form of (44) does not change 
in the original stick and spiral model and consequently the 
value of ξ3 remains the same as the modified model. However, 
(43) becomes λ ξ θ= cosi i1

2
0 . The corresponding fit for the λi 

values of table 1 as a function of θcos i
2

0  yelds ξ = 0.275 9811 . 
In figure 7(b) we show the prediction error δλi (i.e. the differ-
ence between the λi provided by the fitting equations of λi as a 
function of θcos i

2
0  and the corresponding λi values of table 1 

for the original and the modified stick and spiral model. As 
we can see, the error for the modified sick and spiral model 
is between  ±0.001, while the error for the original model is 
almost double, ranging between  −0.0025 and 0.0017. The 
values of ks1 and ′kb for the original model, according to (64) 

are =
−

k 44.178 eV Ås1
1     and =′

−
k 4.0177 eV Åb

1    , i.e. they are 
overesimated by 5 and 4%, respectively, in comparisson with 
the corresponding values obtained from the modified model.

Thus, the original stick and spiral model can not provide 
an accurate description for the bond and angle deformations 
of graphene, or at least, it can not provide such an accurate 
description as the modified model, which is presented here.

7. Conclusions

In summary, we present a method for the study of the equi-
librium deformations of 2D planar materials under uniaxial 
strain. The method is based on the stick and spiral model 
including angle bending energy terms and either only 1st 
nearest neighbors bond stretching terms (case 1) or both 1st 
and 2nd nearest neighbors terms (case 2). The method can 
be generalized to describe structural deformations not only 
under uniaxial strain, but also under any strain conditions. We 
present analytic expressions/equations for the structure defor-
mations under strain, namely the equilibrium angle bending 
and bond stretching deformations for both case 1 (equations 
(19) and (20)) and case 2 (equations (23) and (24)). We then 
focus on graphene in order to assess the applicability of our 
method for which we perform DFT calculations for sev-
eral values of strain in 4 different directions. We find that 
the original stick and spiral model (case 1) decouples the 

equations yielding δli from those yielding δθi and for graphene, 
it predicts that the vertical to the strain bonds are not modi-
fied. This is in contrast with the DFT results. The inclusion of 
2nd nearest neighbors stretching terms (case 2) results in the 
coupling of δli and δθi, improves the model significantly and 
brings the results in close agreement with DFT. Our method 
provides a simple and solid method to study the structural 
deformations of Graphene in the case of uniaxial strain on 
any direction in the elastic regime. The elastic properties of 
graphene under strain are very accurately reproduced by our 
method. Although this first application concerns graphene, 
our method can be applied to any 2D planar material and it 
would be interesting to assess its accuracy on different struc-
tures and materials like Graphene planar allotropes, h-BN, 
Si3B, Si2BN, CdS, etc.
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Appendix A. Relation between ijφ  and iθ s

Let us define, for each atom of the unit cell, a local anti-clock-
wise frame of coordinates with its origin at the position of 
that atom and its x-axis along the strain direction, as shown in 
figure 1(c). Let us denote as r1, r2 and r3 the three bond vectors, 
which have their tail on atom i and by θ1, θ2 and θ3 the corre-
sponding angles between these bond vectors with the strain 
direction, respectively, as shown in figure 1(c).

Obviously, φ=r r r r cosi j i j ij, where φij is the angle formed 
by the bonds i and j, and θ θ= +r i jr rcos sini i i i i

ˆ ˆ, i  =  1, 2, 3. 
Thus, the dot product r ri j can be written as

( ˆ )( ˆ ˆ )
( )
θ θ θ θ
θ θ

= + +
= −

r r i j i jr r r r

r r

cos sin ˆ cos sin

cos ,
i j i i i i j j j j

i j j i
 

(A.1)

and consequently,

( )φ θ θ= −cos cos .ij j i (A.2)

If φ ij0 , θ i0  and θ j0  are the values of the corresponding φij, θi 
and θj angles at equilibrium for ε = 0, then using a first order 
Taylor expansion around these values, (A.2) yields

φ δφ θ θ δθ δθ= − −sin sin ,ij ij j i j i0 0 0( )( ) (A.3)

where φ φ δφ= +ij ij ij0 , θ θ δθ= +i i i0  and θ θ δθ= +j j j0  are the 
corresponding angles at ε≠ 0. Thus, the derivative of δφij with 
respect to δθi is

δφ δθ θ θ φ∂ ∂ = −sin sin .ij i i j ij0 0 0/ ( )/ (A.4)

Imposing that φ π<0 ij ⩽ , (A.2) gives

π θ θ π− <±| − | −k k2 1 2 .i j ⩽ ( ) (A.5)

If θis, i  =  1, 2, 3 are defined inside the same unit circle 
(e.g. θ π<0 2i⩽  or π θ π− < i ⩽ ), then π θ θ π− < − <2 2i j .  
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However, according to (A.5), θ θ−i j is out of the range 
π π−2 , 2( ), for ≠k 0 or 1, and therefore only k  =  0 and 

k  =  1 should be considered. Consequently, (i) for k  =  0 
(or θ θ π< | − |0 i j ⩽ , according to (A.5)), φ θ θ=| − |ij i j  and 
(ii) for k  =  1 (or π θ θ π| − | < 2i j⩽ , according to (A.5)), 
φ π θ θ= −| − |2ij i j . Thus, for any case, ( )δφ δθ δθ=± −ij i j , 
which leads to (15).

If ris, i  =  1, 2, 3, have their tail at the position of an atom 
A, then they have their head at the position of the atoms which 
form bonds with atom A. Assume B is such an atom, which 
forms a bond with another atom C (different than A), and r1 
and r4 are the bond vectors corresponding to the bonds A–B 
and B–C, respectively. There are two options for the direc-
tion of r4: either its head is on the position of atom B and its 
tail on the position of atom C, or the opposite. In the former 
case, the relations between the bond angle φij and the bond 
angle θi with respect to the strain direction are the same with 
those presented above, since φ=r r r r cos1 4 1 4 14. However, in 
the later case, ω=r r r r cos1 4 1 4 14, where the bond angle φ14 
is φ π ω= −14 14. Thus, for this case, the relations presented 
above will be valid if φij is replaced by π φ− ij. Thus, (A.2), 
should be replaced by

φ θ θ= − −cos cos ,ij i j( ) (A.6)

φ δφ θ θ δθ δθ= − − −sin sin ,ij ij j i j i0 0 0( )( ) (A.7)

and

δφ δθ θ θ φ∂ ∂ = − −sin sin .ij i i j ij0 0 0/ ( )/ (A.8)

If π φ π− <0 ij⩽ , then φ π<0 ij ⩽ . For φij in this range, 
(A.6) yields (i) if θ θ π< | − |0 i j ⩽ , then φ π θ θ= −| − |ij i j  and 
(ii) if π θ θ π< | − | 2i j ⩽ , then φ θ θ π=| − |−ij i j . Obviously, 
therefore, for this case, δφij is also ( )δφ δθ δθ=± −ij i j  and 
consequently, (15) is also valid.

Appendix B. The physical meaning of λ

Obviously, Λ is parametrically dependent on ε, 
i.e. δ δθ λ εΛ = Λ l , , ;i i({ } { } ). If Λ is minimized for 
δ δ= ∗l li i , δθ δθ= ∗

i i , and λ λ= ∗, where δ ∗lis, δθ∗is and λ∗ 
are specific values of δlis, δθis and λ, respectively, then 

δ δθ λ ε εΛ = Λ = Λ∗ ∗ ∗l , , ;i imin min({ } { } ) ( ), where Λmin is the 
minimum of Λ.

For δ δ= ∗l li i  and δθ δθ= ∗
i i , the strain ε is 

ε δ δ δθ= ∗ ∗L l L,i i 0({ } { })/  and U is minimized subject to the con-
strain ε δ= L L0/ . Thus, if Umin is the minimum of U subject 
to the constrain ε δ= L L0/ , then δ δθ= ∗ ∗U U l ,i imin ({ } { }) and 
(according to (14)), δ δθ δ δθ λ ε= Λ∗ ∗ ∗ ∗ ∗U l l, , , ;i i i i({ } { }) ({ } { } ), 
or ε ε= ΛUmin min( ) ( ).

According to (19) and (20), for the minimized Λ, δ ∗li  
and δθ∗i  depend linearly on λ∗, and therefore, according to 
(14), λ∗ should depend linearly on ε. Thus, δ δ ε=∗ ∗l li i( ) and 
δθ δθ ε=∗ ∗

i i ( ), and consequently, ε=U Umin min( ). On the other 
hand, Umin is quadratically dependent on δ ∗li  and δθ∗i , and con-
sequently Umin should depend quadratically on ε. Therefore 
we can write ε ε=U Kmin

2( ) , where =K K k k,si bij({ } { }).

Obviously, δ δθ λ ε ε λ∂Λ ∂ =l , , ;i i({ } { } )/ , and conse-
quently, ε δ δθ λ ε ε λΛ = Λ =∗ ∗ ∗ ∗ld d d , , ; di imin/ ({ } { } )/ . Since, 
Λ = Umin min, we have ε ε εΛ = =U Kd d d d 2min min/ / . Thus, 
ε λ= ∗K2 , which leads to (21).

Appendix C. δ ijr  as a function of bond length  
and bond angle deformations

Let us assume that atoms A, B and C belong to the same 
planar 2D structure and atom A forms bonds with atoms B 
and C. Let us also assume that r i0  and r j0  are the bond vectors 
corresponding to the bonds A–B and A–C at equilibrium for 
ε = 0, having both their tails (or their heads) at the position of 
atom A. Then the interatomic distance r0ij between atoms B 
and C is the length of the vector = −r r rij j i0 0 0 , for which

φ= + −r l l l l2 cos ,ij i j i j ij0
2

0
2

0
2

0 0 0 (C.1)

where l0i and l0j are the lengths of r i0  and r j0 , respectively, and 
φ ij0  the bond angle between bonds A–B and A–C. If at the equi-
librium state under strain, l0i, l0j, r0ij and φ ij0  are deformed to 

δ= +l l li i i0 , δ= +l l lj j j0 , δ= +r r rij ij ij0  and φ φ δφ= +ij ij ij0 , 
respectively, then

δ δ
δ δ φ δφ

δ δ
δ δ φ φ δφ

δ δ φ δ

φ δ φ δφ

= + + +

− + + +

≈ + + +

− + + −

≈ + + −

− +

r l l l l

l l l l

l l l l l l

l l l l l l

r l l l l l l

l l l l

2 cos

2 2

2 cos sin

2 cos

cos sin .

ij i i j j

i i j j ij ij

i i i j j j

i j i j j i ij ij ij

ij i i j j i ij j

j ij i i j ij ij

2
0

2
0

2

0 0 0

0
2

0 0
2

0

0 0 0 0 0 0

0
2

0 0 0 0

0 0 0 0 0

( ) ( )
( )( ) ( )

( )( )

(
)

 

(C.2)

For �δr rij ij0 , δ≈ +r r r r2 ,ij ij ij ij
2

0
2

0  and consequently, (C.2) 
leads to

( ) ( )δ φ δ φ δ

φ δφ

= − + −

+

r r l l l l l l

l l

cos cos

sin .

ij ij i j ij i j i ij j

i j ij ij

0 0 0 0 0 0 0

0 0 0
 

(C.3)

Therefore, δrij is a function of the deformations of δli, δlj, δθi 
and δθj, (see appendix A).

The derivatives of δrij with respect to δli and δθi are

δ δ φ∂ ∂ = −r l l l rcosij i i j ij ij0 0 0 0/ [ ] / (C.4)

and

δ δθ φ δφ δθ∂ ∂ = ∂ ∂r l l rsin .ij i i j ij ij ij i0 0 0 0/ [ / ] ( / ) (C.5)

Using (A.2), (A.3) and (A.4) the above equations give

δ θ θ δ
θ θ δ

θ θ δθ δθ

= − −
+ − −
+ − −

r r l l l

l l l

l l

cos

cos

sin ,

ij ij i j i j i

j i j i j

i j i j i j

0 0 0 0 0

0 0 0 0

0 0 0 0

( ( ))
( ( ))

( )( )
 

(C.6)

and

δ δ θ θ∂ ∂ = − −r l l l rcos ,ij i i j i j ij0 0 0 0 0/ [ ( )] / (C.7)

δ δθ θ θ∂ ∂ = −r l l rsin .ij i i j i j ij0 0 0 0 0/ ( )/ (C.8)

However, if the head of ri and the tail of rj (or vice versa) 
are at the position of atom A, then we have to use (A.6)–(A.8) 
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instead of (A.2)–(A.4) (see appendix A), and thus, (C.3)–(C.5) 
give

( ( ))
( ( ))

( )( )

δ θ θ δ
θ θ δ

θ θ δθ δθ

= + −
+ + −
− − −

r r l l l

l l l

l l

cos

cos

sin ,

ij ij i j i j i

j i j i j

i j i j i j

0 0 0 0 0

0 0 0 0

0 0 0 0

 
(C.9)

and

δ δ θ θ∂ ∂ = + −r l l l rcos ,ij i i j i j ij0 0 0 0 0/ [ ( )] / (C.10)

δ δθ θ θ∂ ∂ = − −r l l rsin .ij i i j i j ij0 0 0 0 0/ ( )/ (C.11)

Commuting i with j in (C.4), (C.5), (C.7), (C.8), (C.10) and 
(C.11), we obtain the corresponding relations for δ δθ∂ ∂rij j/  
and δ δ∂ ∂r lij j/ .

Appendix D. Derivation of (31), (33) and (34)

If = +L a bn m0  defines the strain direction, then 
( / )( ( ) ( )ˆ )= + + −L i jn m n m a3 2 3 ˆ0 0, and consequently, 
θ = +n m a Lcos 3 20 0 0( ) /( ) and θ = −n m a Lsin 3 20 0 0( ) /( ),  

where θ0 is the angle of the strain direction with respect to 
the x-axis. Solving these two equations with respect to n and 
m, we obtain, /( )(( / ) ( / ) )θ θ= + =n L a2 3 1 2 cos 3 2 sin0 0 0 0  

/( ) θ− L a2 3 cos0 0 02 and θ= −m L a2 3 1 2 cos 3 20 0 0/( )(( / ) ( / ) 
θ θ= − L asin 2 3 cos0 0 0 01) /( ) , and consequently, + =n m L2 0 /  

( ) /( )θ θ=a L a3 cos 2 3 cos0 0 0 0 03, which lead to (31). In 
appendix H we present useful relations between the trigono-
metric functions of these angles, which will be used here.

Bearing in mind that in graphene = = =l l l a01 02 03 0, and 
using (31), equation (14) becomes

∑ ∑ε θ δ θ δθ= −
= =a

l
2

3
cos

1

3
sin 2 .

i
i i

i
i i

0 1

3
2

0
1

3

0 (D.1)

Using (H.2) for k  =  2 of appendix H, the above equation leads 
to (33).

Moreover, (17) becomes

∑

∑

∑

∑

∑

θ δ θ θ δθ

δ θ θ δθ

δ θ θ δθ δθ

δθ θ

δ θ θ δθ δθ δθ

+ =

⇒ + =

⇒ + −

= −

⇒ + − = −

l a

l a

l a

a

l a a

cos sin cos 0

sin 2 2 cos 0

sin 2 2 cos

cos

sin 2 2 cos 3 ,

j
j j j j j

j
j j j j

j
j j j j i

i
j

j

j
j j j j i i

0 0 0 0

0 0
2

0

0 0
2

0

0
2

0

0 0
2

0 0

( )

( / )

( / ( ))

( ( ))

which leads to (34). In the last step of the above equation we 
used (H.3) of the appendix H.

Appendix E. Derivation of (35)–(39)

As we can see in figure  3, the tails of the bond vectors 
r1, r2 and r3 are at the position of atom A, while the heads 

of the bond vectors r4, r5 and r6 are at the position of atom 
B. Therefore, to apply (25)–(27) to (23) and (24), we 
have to use the upper signs among  ±  and ∓. Moreover, 
=l ai0 0, =r a3ij0 0, θ θ π− = = −′ ′cos cos 2 3 1 2j i0 0( ) ( / ) /  and 
θ θ π− = =′ ′sin sin 2 3 3 2j i0 0( ) ( / ) / . Consequently, (25)–(27) 

yield

δ δ δ δθ δθ= + + −′ ′ ′ ′ ′ ′r l l a3 2 2 ,i j i j j i, 0( / )( ) ( / )( ) (E.1)

δ δ∂ ∂ =r l 3 2ij i/ /  and / / /δ δθ δ δθ∂ ∂ = −∂ ∂ = −′ ′ ′ ′ ′ ′r r a 2i j i i j j 0 ,  
respectively. Thus, (23) gives

( )

( ) ( )

( ) ( )

⎡
⎣
⎢

⎤
⎦
⎥

∑δ δ
λ θ

δ δ δ
θ λ θ

δ δ δ δθ δθ

δ δ δθ δθ
λ

θ

+ =

⇒ + + =

⇒ + + + −

+ + + − =

=

′ ′ ′ ′ ′

′ ′ ′ ′ ′

k l k r
q

L

k l k r r
L

a L

k l k l l
a

l l
a

a

3

2

cos

3

2
2

2 cos

3

cos

3
3

2 2

3

2 2

2

3
cos ,

s i s
k

ij
i i

s i s ij ki
i i

s i s i j j i

k i i k i

1 2
1

4
0

0

1 2
0 0

0

0

0

1 2
0

0

0

2
0

k

which leads to (35), and (24) gives

[( ) ( )]
[ ( / ) ( / )]

/
[( ) ( )] ( )

( )/( ) /
[( ) ( )]

/ [( / )( ) ( / )( )
( / )( ) ( / )( )]

( / )

δθ δθ δθ δθ
δ δ δθ δ δ δθ

λ θ

δθ δθ δθ δθ δ δ
λ θ θ

δθ δθ δθ δθ

δ δ δθ δθ

δ δ δθ δθ
λ θ

− + −
+ ∂ ∂ + ∂ ∂
= −

⇒ − + − + −
= −

⇒ − + −

+ + + −

− + − −
= −

′

′

′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′

k a

k r r r r

q a L

k a a k r r

L a a L

k a

a k l l a

l l a

2

2

sin

2

2 cos 3 sin

2 3 2 2

3 2 2

6 sin 2 ,

b i j i k

s ij ij i ki ki i

i i

b i j i k s ki ij

i i

b i j i k

s k i i k

i j j i

i

0
2

2

0 0 0

0
2

0 2

0 0 0 0 0 0

0
2

0 2 0

0

0

 

(E.2)

which leads to (36). Summing up the three equation (35) (i.e. 
for =′ ′ ′i j k, , 1, 2, 3( ) ( ), (2, 3, 1) and (3, 1, 2)), and using (H.3) 
we obtain

δ δ δ λ+ + + =k k l l l a6 .s s1 2 1 2 3 0( )( ) / (E.3)

Substituting δ∑ = li i1
3  in (35) we take

δ δθ δθ

λ θ

+ + −

= − +

′ ′ ′

′

k k l k a

a k k k

3 2 3 2

2 3 cos 3 2 6 .

s s i s j k

i s s s

1 2 2 0

0
2

0 2 1 2

( / ) ( / ) ( )

( / ) [( / ) ( / ) /( )]
 

(E.4)

Subtracting by parts equation (36) (two at a time) leads to

( / ) ( )

( / ) ( ( ))
( / )( )

⟺ ( / ) ( / ) ( )

( )
⎡
⎣⎢

⎤
⎦⎥

δθ δθ

δ δ δ δ
λ θ θ

δ δθ δθ

λ
θ

+ −

+ − + +
= −

+ + −

= − +
+

′

′

′ ′

′

′ ′

′ ′ ′

′

k k a

a k l l l l

a k l k k a

k

k k

3 4

3 4 3
6 sin 2 sin 2

3 4 4

2 3

2

3
cos

1

3 2 6
.

b s j k

s i

k j

s i b s j k

i
s

s s

2 0
2

0 2 1 2 3

0 0

0 2 2 0
2

2
0

2

1 2

 

(E.5)

The solution of the system of (E.4) and (E.5) are (37) and (38).
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Using the expressions of (37) and (38) for δli and δθ δθ−j i, 
and (H.2), (H.3), (H.4), (H.9) and (H.11), equations (33) and 
(34) become

( )

( )

[ ( / ) ( / )] ( / ) [ ( / )]
( )/

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

∑

∑

∑ ∑

∑ ∑

ε θ ξ θ ξ

θ ξ θ θ

ξ θ ξ θ

ξ θ θ θ

ξ ξ ξ θ

ξ ξ ξ

= +

− −

= +

− −

= + − × −

= + +

′ ′

′

′ ′

′

′ ′ ′

′ ′ ′

=

=

= =

= =

a
a

2

3
cos 3 cos

1

3
sin 2 sin 2 sin 2

2 cos cos

1

3
sin 2 sin 2 sin 2

2 9 8 3 2 1 3 sin 2 0 3 2

9 12 2 4,

i
i i

i
i j i

i
i

i
i

j
i

i
i

i

j

0 1

3
2

0 0 1
2

0 2

1

3

0 3 0 0

1
1

3
4

0 2
1

3
2

0

3 0
1

3

0
1

3
2

0

1 2 3 0

1 2 3
 

(E.6)

and

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑

∑

∑ ∑

∑ ∑

δθ θ ξ θ θ

θ ξ θ ξ

ξ
θ θ θ θ

ξ θ θ ξ θ

ξ θ ξ ξ

ξ θ

= −

− +

= −

− −

= × − × − × − ×

= −

′

′ ′

′

′ ′

′ ′ ′

′

=

=

= =

= =

2

3
cos sin 2 sin 2

sin 2 cos

2

3
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(E.7)

respectively, leading to (39).

Appendix F. Poisson’s ratio

In order to find the Poisson’s Ratio ν, (ν ε ε= − ⊥/ ), we need to 
find the transverse strain ε δ=⊥ ⊥ ⊥L L 0/ , where ⊥L 0 is a length 
of the material perpendicular to the strain direction and δ ⊥L  its 
deformation upon tensile strain ε. If = +⊥L a bt ta b0  is a lattice 
vector, which is perpendicular to the vector = +L a bn m0 , 
which defines the strain direction, then

( )( )
( ) ( ) ( )( )/

( ) ( )

= ⇒ + + =

⇒ + + + =
⇒ + + + =

⊥L L a b a bt t n m

t n a t m a t m t n a
t n m t m n

0 0

3 3 3 2 0
2 2 0.

a b

a b a b

a b

0 0

0
2

0
2

0
2 

(F.1)

For convenience we may select ta and tb to be ta  =  2m  +  n 
and tb  =  −(2n  +  m). Using (30), ⊥L 0 becomes 
= − + + − +⊥L r r rm n n m m n2 20 1 2 3( ) ( ) ( ) . The projection of 

the deformation of a bond vector normal to the strain direction 
is given by (10). Thus, the deformation δ ⊥L  of ⊥L 0 is

∑δ δ θ θ δθ= +⊥
=

⊥L q l asin cos ,
i

i i i i i
1

3

0 0 0( ) (F.2)

where θ θ= − = −⊥q m n L a2 3 cos cos1 0 0 03 02/( )( ), = +⊥q n22

θ θ= + + = −m n m n L a2 3 cos cos0 0 01 03( ) /( )( ) and =⊥q 3  
( ) ( ) /( )( )θ θ− + = − − + = −m n m n m L a2 2 3 cos cos0 0 02 01 . 

Using (H.14) we have

θ=⊥q L a2 3 sin ,i i0 0 0/( ) (F.3)

and consequently (using (42), (43), (49) and (H.4))

]
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(F.4)

The magnitude ⊥L 0 of the vector ⊥L 0 is

θ θ

θ θ θ θ

= | + − + |=|− − |

= | + |

= + +

⊥ ⊥ ⊥a b a b

a b

L m n n m q q

L a

L

2 2

2 3 sin sin

2 sin sin sin sin .

0 3 2

0 0 02 03

0
2

02
2

03 02 03
1 2

( ) ( )
/( )
( ) /

Using (H.2) and (H.4)

θ θ θ θ
θ θ
θ θ θ θ
θ θ θ
θ θ

+ +
= +

+ + +
= − + +
= − + =

sin sin sin sin

1 2 sin sin

1 2 sin sin 2 sin sin

1 2 3 2 sin 1 2 sin sin
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2
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2
01 02 03

2

2
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2
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( / )( )
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( / )( / ) ( / )( )
/ ( / ) ( / ) /

Thus,

= =⊥L L L2 3 4 3 ,0 0 0/ (F.5)

and consequently,

ε δ ξ ξ ξ ε= = + −⊥ ⊥ ⊥L L 3 4 3 2 ,0 1 2 3/ ( / / ) (F.6)

which leads to (55).

Appendix G. Derivation of (57)–(60)

The first of (57) can be directly obtained if we divide by parts 
(45) and (47). Using that equation, (46) becomes

ξ
ξ ξ

= −
= −

′k k k k K

k k K

1 18

1 9 2 .
s s b s

s s

2 1 2 1 0

1 2 1 3 0

( / )/
( ( / ) / )/ 

(G.1)

Equation (47) can also be written as

( / )/ξ = +k k k k K2 6 .s s s s3 1 2 1 2 0 (G.2)

Dividing (G.1) and (G.2) by parts we obtain
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ξ ξ ξ ξ
ξ ξ ξ
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(G.3)

Using the first of (49), this equation  leads to the second of 
(57).

From the expression = + + + ′K k k k k k k9 18 3s s s s s b0 1
2

1 2 1 2( ) ,  
it is obvious that the expression + + ′k k k k k2 2 3s s s s b1 2 1 2( ) ,  
which appears in (53), is + + = −′k k k k k K2 2 3s s s s b1 2 1 2 0( ) (  

)/+ ′k k k18 9s s b1
2

1 . Thus, using (G.1) and the second of (57),
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Using (49) (i.e. ξ ξ ξ− = +2 9 2 63 1 2/ ), we find
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(G.4)

Solving this equation with respect to ks1 we get (58).
Using the expression in (58) for ks1 and (57), the derivation 

of (59) and (60) is obvious.

Appendix H. Useful relations between trigonometric 
functions of θ i0  of graphene

Some relations, which are used in the present study, between 
the trigonometric functions of the angles θ i0  defined by (32), 
are presented here.

As we have already seen in section  5.2, q1  =  −m, 
q2  =  −n and q3  =  n  +  m. Thus, + + =q q q 01 2 3 , and  
consequently, θ θ θ+ + =cos cos cos 001 02 03 , where θ =i0  
θ θ π θ= −i2 3i0 0 0( ) / , i  =  1, 2, 3. Obviously, (i) θ θ =2 01 0( )  

/ ( )π θ θ θ− =4 3 2 20 02 0 , ( ) / ( )θ θ π θ π θ θ= − = +2 8 3 2 2 202 0 0 01 0  
and θ θ π θ π θ θ= − = +2 4 2 2 203 0 0 03 0( ) ( ), and (ii) θ θ =4 01 0( )  

/ ( )π θ π θ θ− = +8 3 4 2 40 01 0 , θ θ π θ π= − = +4 16 3 2 402 0 0( ) /
θ θ402 0( ) and θ θ π θ π θ θ= − = +4 8 2 6 403 0 0 03 0( ) ( ). Consequently,  
for k  =  1, or 2, or 4,

θ θ θ+ + =k k kcos cos cos 0.01 02 03( ) ( ) ( ) (H.1)

The first derivative of the above equation with respect to θ0 
gives

θ θ θ+ + =k k ksin sin sin 0.01 02 03( ) ( ) ( ) (H.2)

Using (H.1) for k  =  2 or k  =  4, and the relation 
θ θ= −cos 2 2 cos 12  we obtain

( ) ( ) ( )
/
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θ θ θ
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= + + =
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cos cos cos 3 2.
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(H.3)

Then, using the relation θ θ= −sin 1 cos2 2 , we obtain

θ θ θ
θ θ θ
+ +

= + + =
sin 2 sin 2 sin 2

sin sin sin 3 2.

2
01

2
02

2
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2
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2
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(H.4)

Moreover, using the relation θ θ θ=sin 2 2 sin cos , (H.2) for 
k  =  2 yields

θ θ θ θ θ θ+ + =sin cos sin cos sin cos 0.01 01 02 02 03 03 (H.5)

Using (H.1) for k  =  1 and (H.3), we obtain

( )

/
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(H.6)

In turn, using (H.2) for k  =  1 and (H.4), we obtain

θ θ θ θ θ θ+ + = −sin sin sin sin sin sin
3

4
.01 02 02 03 03 01 (H.7)

Thus,
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Consequently, (H.3) gives
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(H.9)

and in turn, (H.4) gives

θ θ θ
θ θ θ θ θ
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(H.10)

Taking the first derivative of (H.9), we obtain

∑ θ θ =
=

cos sin 0.
i

i i
1

3
3

0 0 (H.11)

Moreover, let us consider the trigonometric identity
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θ θ
θ θ θ θ
−

= − +
m m

m m

sin sin

2 sin 2 cos 2 .
j i

j i i j

0 0

0 0 0 0

( ) ( )
[ ( )/ ] [ ( )/ ]

For the angles θ i0  in (32) we have θ θ π− = −j i2 3j i0 0( )/ ( ) /  and 
θ θ π θ+ = + −i j2 3j i0 0 0( )/ ( ) / . For (i,  j,  k)  =  (1, 2, 3), or (2, 3, 1),  

or (3, 1, 2), the sum i  +  j  +  k  =  6, and consequently,  
i  +  j  =  6  −  k.            Thus,               ( ) / ( ) /π θ π θ π+ − = − − = −i j k3 6 3 20 0  
π θ π π θ− = − +k k3 2 k0 0/ . Consequently, θ θ+mcos i j0 0[ ( ) /  

θ π= −m k2 cos k0] [ ( )] and [ ( )/ ] [ ( ) /θ θ π− = −m m j isin 2 sinj i0 0  
3]. Thus, for m  =  1

θ θ θ− = −′ ′ ′sin sin 3 cos ,j i k0 0 0 (H.12)

and for m  =  2

θ θ θ− =′ ′ ′sin 2 sin 2 3 cos 2 .j i k0 0 0 (H.13)

Taking the first derivative of (H.12) with respect to θ0 we 
obtain

θ θ θ− =′ ′ ′cos cos 3 sin .j i k0 0 0 (H.14)
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