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Abstract. We present a simple torsional potential for graphene to accurately describe its out-of-plane
deformations. The parameters of the potential are derived through appropriate fitting with suitable DFT
calculations regarding the deformation energy of graphene sheets folded around two different folding axes,
along an armchair or along a zig-zag direction. Removing the energetic contribution of bending angles, using
a previously introduced angle bending potential, we isolate the purely torsional deformation energy, which
is then fitted to simple torsional force fields. The presented out-of-plane torsional potential can accurately
fit the deformation energy for relatively large torsional angles up to 0.5 rad. To test our proposed potential,
we apply it to the problem of the vertical displacement of a single carbon atom out of the graphene plane
and compare the obtained deformation energy with corresponding DFT calculations. The dependence of
the deformation energy on the vertical displacement of the pulled carbon atom is indistinguishable in these
two cases, for displacements up to about 0.5 Å. The presented potential is applicable to other sp2 carbon
structures.

1 Introduction

Following the isolation of single layer graphene [1] an
enormous research effort has been devoted to the study
of this two-dimensional material and its properties [2–5].
Potential applications have been explored in electronics
[6], opto-electronics [7], gas filtering [8], energy storage [9],
uses related to its unique mechanical properties [10–12],
etc.

Many empirical force fields have been used in atomistic
simulations, calculating various structural, mechanical or
phonon properties of graphene [13–23]. Besides the older,
well known Tersoff [24,25] and Brenner [26] potentials,
more accurate force fields have been introduced the last
two decades. For example, optimized parameter sets for
the latter potentials, providing better description of struc-
tural and phonon properties of graphene are presented in
reference [27]. LCBOP [28,29] and AIREBO [30] are effi-
cient potentials that have been widely applied in many
calculations. Other potentials leading to good predictions
of elastic and thermal properties of graphene have been
also discussed [31].

a e-mail: lathiot@eie.gr

More recently, we have presented simple analytical
expressions for the accurate description of bond stretch-
ing and angle bending potentials of graphene [12]. These
potentials are derived by fitting analytical functions to
the deformation energy of proper distortions of graphene,
obtained through accurate calculations from first prin-
ciples’ methods (DFT). The presented force field is
applicable only to distortions restricted within the plane
of graphene. These in-plane potentials can accurately
describe elastic properties and the mechanical response of
graphene in various extensional loads [12]. In this work,
using similar ideas and methods, we extend this force field
with torsional energy terms, in order to be able to describe
out-of-plane distortions in graphene. The basic motivation
is to provide a simple and computationally efficient clas-
sical potential which can be used for accurate large-scale
atomistic calculations. The torsional potential presented
here is also capable to describe other non-planar sp2

carbon systems, like fullerenes and carbon nanotubes [32].
In the present work, we describe in detail the proce-

dure followed and the necessary analytical calculations
in order to fit the proposed torsional potential to ab-
initio data. The full potential is then tested in the case of
the deformation energy due to the vertical displacement
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Fig. 1. Graphene’s honeycomb lattice with a few atomic
positions labeled as i, j, k, l, m.

of a carbon atom outside graphene’s plane. Additional
applications in realistic systems are presented in reference
[32]. As shown there, the full proposed potential repro-
duces successfully the energetics of fullerenes, the strain
energy and the Young modulus of carbon nanotubes, and
the phonon dispersion of graphene, especially the out-of-
plane, ZA, and ZO, branches that are directly related to
the torsional terms introduced here. In this work, we have
considered two types of folding of graphene sheets around
different axes (either an armchair or a zig-zag one). The
corresponding deformation energies are calculated using
DFT methods. Following the removal of the contribution
of angle bending terms in the total deformation energy,
we isolated the pure torsional energy. Then, the analytic
modeling of this energy in terms of individual torsional
contributions, leads to a fitting procedure providing the
optimal parameters of the out-of-plane torsional energy.

This paper is organized as follows: In Section 2, we
describe the structures and methodology adopted for the
DFT simulations that was used to obtain the deformation
energies. Then in Section 3, we present the analytic calcu-
lations for removing the angle bending contributions from
the deformation energies. The analytic expressions of the
torsional energy in terms of the folding angles are provided
in Section 4. The fitting of the torsional terms for two
models considered here is described in Section 5, complet-
ing the presentation of the derivation of the new torsional
force fields. Then, in Section 6, we present a test case,
the deformation energy due to the vertical displacement
of a carbon atom outside graphene’s plane, as an applica-
tion of the proposed scheme and compare the predictions
with DFT results. Finally, a summary and conclusions are
given in Section 7.

2 Structures and DFT calculations

2.1 Torsional angles in graphene

In Figure 1, we show a part of the honeycomb structure
of graphene and a few carbon-atom positions labeled
as i, j, k, l, m. The quadruple (i, j, k, l), with three of
these positions belonging to the same hexagonal ring and
one to an adjacent is customary called trans, while the
quadruple (i, j, k, m), with all belonging to the same ring,
is called cis. In the case that the structure is distorted
and the atoms in the quadruple (i, j, k, l) are no longer
co-planar, we can define a torsional angle, which we label

(i-j-k-l), as the dihedral angle of the planes i-j-k and j-k-l.
The torsional angles can then be classified as trans or cis
accordingly. The dihedral angle between two planes, e.g.
i-j-k and j-k-l, can be defined as the angle between the
vectors perpendicular to the planes. We assumed that the
perpendicular vectors are pointing inwards for clockwise
triples (like i-j-k) or outwards for anti-clockwise triples
(like j-k-l). Under this assumption, torsional angles are
in the range [0, π] with cis angles smaller than π/2 and
trans angles larger than π/2.

2.2 DFT results

DFT calculations were performed for two distorted
graphene structures: one that graphene is folded around
an armchair axis and one around a zig-zag. These struc-
tures are shown in Figure 2 where we label all atoms
relevant to the present discussion. They are periodic along
the folding axis, while on the vertical direction they are
not. The folding angle around either the armchair or
zig-zag axis is denoted by φ. Throughout the paper we
denote with symbol θ “usual” angles between carbon
bonds (bending angles) and with ω torsional (dihedral)
angles as defined in the previous subsection.

All ab initio calculations were performed with
Quantum-Espresso periodic-DFT code [33], with the same
pseudopotential [34] as in reference [12]. The wave-
function and density plane-wave cutoffs were chosen 40 Ry
and 400 Ry, respectively. The unit cell we chose is minimal
in the periodic direction (that of the folding axis) while,
in the vertical direction, it is appropriately large to avoid
edge-effects. Thus, the simulated structures are nanorib-
bons that are folded around their middle line axis. In the
case of the armchair folding (Fig. 2, top), the unit cell is
such that neighbors up to the 5th in the vertical direction
were included. In the case of the zig-zag folding the cor-
responding dimension is long enough to include up to 8th
neighbors. Thus, the unit cells contain 22 and 17 atoms
for the armchair and the zig-zag folding axes, respectively.
In the reciprocal space, we used a mesh of 1× 24× 1, i.e.
24 points were assumed along the bending direction that
the structure is periodic.

In Figure 3, we show with filled circles the DFT cal-
culated total deformation energy per unit cell along the
folding direction, as a function of the folding angle φ,

for both armchair and zig-zag folding actions, E
(a)
d and

E
(z)
d , respectively. The total deformation energy per unit-

cell is taken as the energy difference between the folded
structure and the planar one (φ = 0). Apparently, the two
structural distortions due to the considered foldings are
composite and consist of several individual angle-bending
and torsional deformations. Note that bond lengths are
not altered, so there is no bond-stretching contribution in
the total deformation energy.

In order to perform a fitting for the torsional terms
alone, we first need to exclude angle-bending contributions
from the total deformation energy. To this end, we (i) iden-
tify all angle-bending terms and express analytically their
corresponding bending angles θ in terms of φ and then
(ii) remove the angle-bending terms using the analytic
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Fig. 2. Part of graphene’s structure with the armchair (top)
and zig-zag (bottom) folding axes shown by dotted lines.
We label several atoms that are mentioned in the text. The
structure is periodic along the bending axis direction. The
boundaries of the unit cell, adopted in the DFT calculations,
in the folding direction are shown by the vertical dashed
blue lines. The size in the vertical to the folding direction is
described in the text.

potential presented in reference [12]. The residual, pure
torsional energy per unit cell, when the contribution from
angle-bending is subtracted, as a function of the out-of-
plane folding angle φ is shown in Figure 3 (diamonds), for
the two different folding directions. As we see in Figure 3,
the contribution from angle bending is significant for φ
larger than 0.2 rad. In order to fit an analytic expression to
the torsional terms, we have to (i) identify all the individ-
ual torsional terms that contribute to the pure torsional
energy for each of the zig-zag and armchair folding cases,

Fig. 3. The total deformation energies, E
(a)
d and E

(z)
d , calcu-

lated with DFT (filled circles) and the pure torsional energies,

E
(a)
t and E

(z)
t , after removing angle bending terms (diamonds),

as a function of the folding angle φ. The superscripts (a) and
(z) correspond to the armchair (red) and zig-zag (black) folding
cases, respectively.

and, subsequently (ii) express the corresponding torsional
angles in terms of the folding angle, φ. These steps are
described in the following two sections, where all necessary
analytical expressions are presented.

3 Removing the angle-bending terms

3.1 Folding around the armchair axis

In the case of folding around the armchair direction
(Fig. 2, top) two atoms of the unit-cell lie on the folding
axis (labeled 1 and 2). It is easy to see that the folding

alters two of their bending angles per unit cell, (3̂24) and

(6̂15), which are equal. One can show that these angles,
in terms of φ, are given by

θ(a) = 2 arcsin

(√
3

8

√
cosφ+ 1

)
. (1)

The angle-bending energy that one needs to remove
from the total energy is

U
(a)
b = 2Vb(θ

(a)(φ)), (2)

where Vb(θ) is obtained from the analytical expression for
the angle-bending potential given in reference [12]:

Vb(θ) =
k

2

(
θ − 2π

3

)2

− k′

3

(
θ − 2π

3

)3

, (3)

with k = 7.0 eV/rad2 and k′ = 4 eV/rad3.
Removing these terms from the total deformation ener-

gies, E
(a)
d , we find the total (pure) torsional energy

E
(a)
t = E

(a)
d − U

(a)
b , (4)

shown in Figure 3.
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3.2 Folding around the zig-zag axis

Similarly, in the case of folding around the zig-zag direc-
tion (Fig. 2, bottom) only one atom in the unit-cell
(labeled 1), lies on the folding axis. The folding affects

two of its angles, (2̂16) and (2̂15), that are also equal. In
terms of φ, these angles are given by

θ(z) = 2 arcsin

(
1

2

√
2 + cosφ

)
. (5)

Then, the angle-bending energy that one needs to
subtract from the total energy is

U
(z)
b = 2Vb(θ

(z)(φ)). (6)

Removing these terms from the total deformation energy,
we find the pure torsional energy,

E
(z)
t = E

(z)
d − U

(z)
b , (7)

presented in Figure 3 for this case.

4 Analytical expressions for the torsional
energy

Here we provide analytical expressions for the total tor-

sional energies , U
(a)
t (φ) and U

(z)
t (φ), as functions of the

folding angle φ. These expressions contain parameters to
be fitted so that they reproduce, as close as possible, the

DFT derived E
(a)
t and E

(z)
t data shown in Figure 3. To

arrive to such analytical expressions we first identify all
altered torsional angles (per unit cell) and express them

in terms of the folding angle φ. Then, U
(a)
t (φ) and U

(z)
t (φ)

will be just the sum of all individual torsional terms that
correspond to these altered torsional angles.

Regarding the individual torsional potential energy,
Vt(ω), two different functional forms would be considered.
The most frequently used formula, referred as model 1
here, is

Vt(ω) =
1

2
V1[1 + cosω]

+
1

2
V2[1− cos(2ω)]. (8)

An alternative model, which we call model 2, assumes a
different fitting formula for cis or trans dihedral angles ω

V cis
t (ω) = Kcis[1− cos(2ω)],

V trans
t (ω) = Ktrans[1− cos(2ω)], (9)

where either the first or the second expression of
equation (9) is used for cis or trans torsional angles,
respectively. Below we use both models 1 and 2 to fit their
parameters to the obtained DFT results.

4.1 Folding around the armchair axis

Inspecting Figure 2 (top) we identify the following tor-
sional (dihedral) angles per unit cell that are altered by
folding around an axis along the armchair direction:

– 2 trans dihedral angles, (5-1-2-3), (4-2-1-6), with

ω
(a)
1 (φ) = arccos (− cosφ) (10)

– 4 cis dihedral angles, (11-4-2-3), (14-5-1-6), (7-3-2-
4), (10-6-1-5), with

ω
(a)
2 (φ) = arccos

√3
1 + cosφ√

9 sin2 φ+ 6(1 + cosφ)


(11)

– 4 trans dihedral angles, (12-4-2-3), (13-5-1-6), (8-3-
2-4), (9-6-1-5), with

ω
(a)
3 (φ) = arccos

−√3
1 + cosφ√

9 sin2 φ+ 6(1 + cosφ)


(12)

Through the expressions given above, the total torsional

energy, U
(a)
t within the model 1, becomes an analytic

function of φ:

U
(a)
t (φ) = 2Vt(ω

(a)
1 (φ)) + 4Vt(ω

(a)
2 (φ))

+4Vt(ω
(a)
3 (φ)), (13)

where Vt(ω) is the individual torsional term given in
equation (8).

For the model 2, the corresponding expression of the

total torsional energy U
(a)
t is

U
(a)
t (φ) = 2V trans

t (ω
(a)
1 (φ)) + 4V cis

t (ω
(a)
2 (φ))

+4V trans
t (ω

(a)
3 (φ)), (14)

with V cis
t and V trans

t given by equation (9).

4.2 Folding around the zig-zag axis

From Figure 2 (bottom) we identify the following dihedral
angles per unit cell that are affected by the folding around
a zig-zag axis:

– 2 cis dihedral angles, (3-2-1-6), (4-2-1-5), with

ω
(z)
1 (φ) = arccos

(√
3

sin2 φ+ 3

)
(15)

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 11 Page 5 of 10

– 2 trans dihedral angles, (4-2-1-6), (3-2-1-5), with

ω
(z)
2 (φ) = arccos

(
−

√
3

sin2 φ+ 3

)
(16)

– 2 cis dihedral angles, (2-1-5-13), (2-1-6-9), with

ω
(z)
3 (φ) = arccos

(√
3

sin2 φ+ 3
cosφ

)
(17)

– 2 trans dihedral angles, (2-1-5-14), (2-1-6-10), with

ω
(z)
4 (φ) = arccos

(
−

√
3

sin2 φ+ 3
cosφ

)
(18)

Then the total torsional energy for the model 1 is given
by

U
(z)
t (φ) = 2Vt(ω

(z)
1 (φ)) + 2Vt(ω

(z)
2 (φ))

+2Vt(ω
(z)
3 (φ)) + 2Vt(ω

(z)
4 (φ)), (19)

while for the case of model 2 becomes

U
(z)
t (φ) = 2V cis

t (ω
(z)
1 (φ)) + 2V trans

t (ω
(z)
2 (φ))

+2V cis
t (ω

(z)
3 (φ)) + 2V trans

t (ω
(z)
4 (φ)). (20)

5 Fitting procedure

The pure torsional energy data derived through DFT cal-

culations, (φi, E
(a)
t,i ) and (φi, E

(z)
t,i ), shown with red and

black diamonds respectively in Figure 3, and the ana-

lytical expressions U
(a)
t and U

(z)
t given in equations (13)

and (19) for the model 1 (or Eqs. (14) and (20) for the
model 2) can be used to obtain the optimal parameters
V1 and V2 (or Kcis and Ktrans) of the individual torsional

terms so that U
(a)
t and U

(z)
t reproduce the dependence of

E
(a)
t (φ) and E

(z)
t (φ) as close as possible. For this purpose,

adopting a standard procedure, we minimize an objec-
tive function OF (V1, V2) or OF (Kcis,Ktrans) which is the
equal-weighted sum of the square differences,

OF =

φi<φmax∑
i=1

[
E

(a)
t,i − U

(a)
t (φi)

]2
+

φi<φmax∑
i=1

[
E

(z)
t,i − U

(z)
t (φi)

]2
. (21)

The sums in the above expression run over all i for which
φi is smaller than an upper-limit angle φmax.

Table 1. Model 1: Optimal fitting parameters V1 and
V2 for model 1, for the three different values of φmax

examined.

φmax (◦) V1 (eV) V2 (eV)

10 −0.00013 0.221
20 −0.00017 0.226
30 −0.00035 0.233

For the model 1, the fitted total torsional energies

U
(a)
t (φ) and U

(z)
t (φ) given by equations (13) and (19)

depend on V1 and V2 through the corresponding depen-
dence of the individual torsional terms Vt of equation (8).

In the case of model 2, we optimize Kcis and Ktrans

parameters, and the expressions (14) and (20) are used
instead, where the individual torsional terms V cis

t or V trans
t

are given by equation (9).
The choice of φmax is expected to affect the quality of

fitting for small and large values of φ. We are interested in
checking whether the fitting parameters depend on φmax

and, if so, at what extend.

5.1 Model 1: fitting results for V1, V2

We performed fitting of the parameters V1 and V2 of
equation (8), for three different values of φmax: 10◦, 20◦

and 30◦. The optimal parameters V1 and V2 are given in
Table 1 for each case.

In Figure 4, we show, the total torsional energies, E
(a)
t

and E
(z)
t and the fitted analytical expressions for these

three values of φmax. In all cases, the fitting reproduces the
armchair data in closer agreement than the zig-zag, i.e. for
a larger range of φ. For φmax = 10◦, there is a rather good
agreement for values of φ up to 0.50 rad for the armchair
case and 0.40 rad for the zig-zag case. For φmax = 20◦, this
range of agreement increases roughly up to 0.60 rad and
0.45 rad for the armchair and zig-zag cases, respectively.
Finally, for φmax = 30◦, this agreement range increases
further up to 0.70 and 0.50 rad, respectively. As expected,
by increasing φmax, the maximum range of agreement also
increases, but this is at the cost of the agreement for
smaller angles. As the fitting procedure is trying to fit
better larger values of φ the quality for smaller angles
deteriorates. This deterioration, however, is rather small
as one can see in the insets of Figures 4a–4c where the
region of smaller angles is enlarged.

However, in general, for angles φ up to 0.4 rad (22◦) cor-
responding to torsional energies 0.2–0.3 eV, all fittings are
satisfactory. On the other hand, as we see in Table 1, the
fitted values of V1 and V2 are not so sensitive to the value
of φmax: V1 remains close to zero while V2 is in the range
0.22–0.23 eV. Further, the value of V2 = 0.23 eV, obtained
for φmax = 20–30◦ performs better for larger angles, up to
0.5 rad, corresponding to energies of 0.4–0.5 eV, while on
the other hand the fitted results in the region of smaller φ
remain satisfactory. These considerations suggest that it
is quite reasonable to adopt as optimal parameters V1 = 0
and V2 = 0.23 eV. Thus, our proposed torsional potential

https://epjb.epj.org/
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Fig. 4. Fit of the analytical expressions for model 1 (lines) to the numerically derived data E
(a)
t and E

(z)
t (points) of the total

torsional energy, for different choices of φmax equal to (a) 10◦, (b) 20◦, and (c) 30◦. In the inset we zoom in the region of small
angles φ.

Fig. 5. The analytical torsional energies considering model 1,
for the folding around the armchair (a) and zig-zag (z) axes,

U
(a)
t and U

(z)
t , equations (13) and (19) respectively, using the

proposed parameters V1 = 0 eV and V2 = 0.23 eV (lines), com-

pared to the numerically derived data E
(a)
t and E

(z)
t (points).

The inset zooms in small values of φ to illustrate the quality
of the fit in that region.

has the simple form

Vt(ω) =
1

2
V2 (1− cos(2ω)) , V2 = 0.23 eV. (22)

The analytical torsional energy using this potential is

shown in Figure 5 along with the DFT derived E
(a)
t and

E
(z)
t data.

5.2 Model 2: fitting results for Kcis, Ktrans

As in the previous subsection, we performed the fitting of
parameters Kcis and Ktrans of equation (9) for the same
values of φmax, i.e. 10◦, 20◦ and 30◦. The optimal param-
eters Kcis and Ktrans for each of these cases are given in
Table 2. In Figure 6, we show the resulted fitting (lines)
for the armchair and zig-zag folding cases for all three val-
ues of φmax, compared to the DFT derived data for the

total torsional energy per unit cell, E
(a)
t and E

(z)
t (points).

The fitting quality is quite similar to that of the previous

Table 2. Model 2: Optimal fitting parameters Kcis and
Ktrans, for the three different values of φmax examined.

φmax (◦) Kcis (eV) Ktrans (eV)

10 0.104 0.112
20 0.134 0.096
30 0.150 0.090

subsection. Again, for φmax = 20◦ and 30◦, the quality
improves for larger values of φ and at the same time
the fit for smaller φ does not deteriorate substantially.
Thus, we propose a rounded optimal set Kcis = 0.14 eV
and Ktrans = 0.10 eV which is close to the values obtained
for φmax = 20◦ and 30◦. In Figure 7, we show the torsional
energy analytically obtained with model 2 using these val-
ues for Kcis and Ktrans, compared with the numerical data

E
(a)
t and E

(z)
t .

To summarize, for the model 2, we propose

V cis
t (ω) = Kcis[1− cos(2ω)], Kcis = 0.14 eV,

V trans
t (ω) = Ktrans[1− cos(2ω)], Ktrans = 0.10 eV, (23)

where either the former or the latter expression is used
depending on whether the torsional angle ω is cis or trans,
respectively.

5.3 Comparison of the two models

In Figure 8, we show the total torsional energies per unit
cell, for both fitting forms of models 1 and 2, using the
optimal parameters obtained previously. Note that the
two models are of the same quality. They almost coin-
cide for the armchair case, while for the zig-zag one,
the model 2 is slightly better for larger φ’s and the
model 1 marginally better for smaller ones. The differences
however are not significant for φ’s up to 0.5 rad.

The obtained optimal parameters of model 2, Kcis =
0.14 eV and Ktrans = 0.10 eV, are close to each other, indi-
cating that a single parameter with value the average of
them would offer a reasonable description. Moreover, this
average value is almost equal to V2/2. Thus, it is rather
unnecessary to assume different parameters for cis and

https://epjb.epj.org/
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Fig. 6. Fit of the analytical expressions for model 2 (lines) to the numerically derived data E
(a)
t and E

(z)
t (points) of the total

torsional energy, for different choices of φmax equal to (a) 10◦, (b) 20◦, and (c) 30◦. In the inset we zoom in the region of small
angles φ.

Fig. 7. The analytical torsional energies considering model
2, for the folding around the armchair (a) and zig-zag (z)

axes, U
(a)
t and U

(z)
t , equations (14) and (20) respectively, using

the proposed parameters Kcis = 0.14 eV and Ktrans = 0.10 eV

(lines), compared to the DFT derived data E
(a)
t and E

(z)
t

(points). The inset zooms in small values of φ to illustrate
the quality of the fit in that region.

Fig. 8. Comparison between the fitting of the two models:
model 1 with parameter values V1 = 0 eV, V2 = 0.23 eV and
model 2 with parameters Kcis = 0.14 eV, Ktrans = 0.10 eV.

trans dihedral angles and, to keep things as simple as pos-
sible, the simple form of equation (22), is quite sufficient
to describe all torsional distortions. Therefore, the model
1 of equation (22) is our proposed one, containing a single
parameter V2.

6 Application to the vertical displacement of
a carbon atom in graphene

In order to test the accuracy of the proposed parame-
ters for the torsional terms, we consider the deformation
energy of graphene due to a vertical, out-of-plane displace-
ment of a single carbon atom. We consider that apart from
the vertically displaced atom, all other atoms remain fixed
at their equilibrium positions within graphene’s plane.
The task is to compare the deformation energy obtained
by the present potential, along with the in-plane force field
of reference [12], with that obtained by DFT calculations
(using the same method that was used to produce the data
discussed above).

The process of moving a carbon atom vertically out-
side graphene’s plane is described by a deformation energy
consisting of all kinds of individual potential energy terms,
i.e. bond-stretching, angle-bending and of course torsional
terms.

Concerning the bond-stretching terms, the vertical
movement of a carbon atom at a displacement z over
the plane, alters only the three bonds of that atom (see
Fig. 9). If the length of these bonds at z = 0 is d their
altered length d′ becomes

d′(z) =
√
d2 + z2. (24)

At the same time, two different kinds of angle-bending
terms appear corresponding to: (i) the three angles, θ1,
between the atom’s bonds (marked in red in Fig. 9) and
(ii) the six angles, θ2, between these bonds and the bonds
marked in blue in Figure 9. These angles can be expressed
in terms of the displacement z as

θ1(z) = arccos

(
2z2 − d2

2(d2 + z2)

)
(25)
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Fig. 9. A vertical displacement (normal to the page) of a car-
bon atom (marked red) results in contributions to the total
deformation energy from bond-stretching (elongation of red
bonds), angle-bending (altering θ1 and θ2 angles), and torsional
terms (twisting around red and blue bonds).

and

θ2(z) = arccos

(
− d

2
√
d2 + z2

)
. (26)

Finally, several torsional terms also contribute to the
deformation energy. There are rotations around the 3
bonds of the displaced atom and its first neighbors
(marked in red in Fig. 9) as well as rotations around the
6 bonds of the first neighbors and the second neighbors
(marked in blue in Fig. 9). These rotations correspond to
the following torsional angles:

– 6 cis dihedral angles around the bonds marked in red
in Figure 9 given by

ω
(1)
cis (z) = arccos

 3
4√(

z
d

)2
+ 3

4

√
3
(
z
d

)2
+ 3

4

 (27)

– 6 trans dihedral angles around the bonds marked in
red in Figure 9 given by

ω
(1)
trans(z) = arccos

 − 3
2

(
z
d

)2 − 3
4√(

z
d

)2
+ 3

4

√
3
(
z
d

)2
+ 3

4


(28)

– 6 cis dihedral angles around the bonds marked in
blue in Figure 9 given by

ω
(2)
cis (z) = arccos

 1√
4
3

(
z
d

)2
+ 1

 (29)

Fig. 10. The deformation energy, Ed, written in analytical
form in equation (31), due to the vertical out-of-plane displace-
ment of a single carbon atom in graphene as a function of the
vertical displacement z, calculated with the present potential
and compared to DFT results.

– 6 trans dihedral angles around the bonds marked in
blue in Figure 9 given by

ω
(2)
trans(z) = arccos

 −1√
4
3

(
z
d

)2
+ 1

. (30)

Then, the total deformation energy is given by

Ed(z) = 3Vs(d
′(z)) + 3Vb(θ1(z)) + 6Vb(θ2(z))

+6Vt(ω
(1)
cis (z)) + 6Vt(ω

(1)
trans(z))

+6Vt(ω
(2)
cis (z)) + 6Vt(ω

(2)
trans(z)), (31)

where Vs(r), Vb(θ) are respectively the bond-stretching
and angle-bending terms given in reference [12]. Vt is
the individual torsional term of equation (22) for model
1, while for model 2 it should be replaced by V cis

t or
V trans
t of equation (23) for the two ωcis and the two ωtrans

respectively. In equation (31), the deformation energy, Ed,
becomes an analytic function of z through the explicit
dependence on z of the bonds d′, the angles θ1, θ2 and the

dihedral angles ω
(1)
cis , ω

(1)
trans, ω

(2)
cis , ω

(2)
trans.

In Figure 10, we show the deformation energy Ed, ana-
lytically calculated by the expression of equation (31) for
both models 1 and 2, in comparison with the correspond-
ing DFT results. As we see, both models perform equally
well and the error between the analytical expressions using
the classical potential terms and the ab initio computa-
tions does not exceed 0.05 eV for the deformation range
shown. There are small differences in their agreement
with DFT; for example model 2 seems slightly better for
intermediate-size displacements while model 1 for larger
ones. However, these small differences are insignificant,
validating our preference for model 1 on the basis of its
simplicity.
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7 Conclusion

In summary, we present a simple torsional force field for
graphene and other sp2 carbon nanostructures. To obtain
this potential we performed two sets of DFT calculations
by folding two different graphene nanoribbon structures
around their middle line. The first set of calculations con-
cerns the folding of an armchair nanoribbon around its
middle line, i.e. an armchair axis. The second concerns
the folding of a zig-zag nanoribbon around its middle line
which is a zig-zag axis.

From the DFT derived deformation energies we isolated
the “pure” torsional contribution by removing angle-
bending terms with the use of a previously proposed
analytical potential energy form [12]. The total torsional
deformation energy was then fitted to two different ana-
lytic forms (containing two parameters each) that we call
models 1 and 2; the first (model 1) is that of equation (8)
and does not distinguish torsional angles, while the second
(model 2) of equation (9) treats differently cis and trans
torsional angles.

We found that the form of model 1 reduces to one
parameter form, equation (22), which was found to be an
average of the cis and trans terms of model 2 that differ
not so much from each other, see equation (23). This sug-
gests that the use of two different terms is redundant and
the single term of model 1 suffices at a reasonable level of
accuracy. Both models reproduce accurately the torsional
deformation energy of the folded graphene nanoribbons
we considered up to folding angles of the order of 30◦

(≈0.5 rad).
As an additional validation test we considered the case

of the deformation energy due to the vertical displacement
z of a single carbon atom over graphene’s plane. For this
task we used the torsional terms of either model 1 or model
2 combined with the bond-stretching and angle-bending
all potential energy terms of reference [12]. For all poten-
tial energy terms contributing to the deformation energy,
analytic expressions in terms of the displacement z were
provided. We found that both models perform equally
well in this case with errors not exceeding 0.05 eV for a
relatively large range of z, up to 0.4–0.5 Å. The good per-
formance of both models in this case validates our choice
for the simpler model 1.

The torsional force field presented here, in combina-
tion with the bond-stretching and angle-bending potential
terms of reference [12], which were also fitted to DFT
results using the same density functional approximation,
provide a complete, accurate, but simple in form atom-
istic potential, which is computationally efficient due to
its simplicity. Thus, we expect that it will be proven a
very useful tool for large scale atomistic simulations of
graphene and other sp2 carbon nanostructures.
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