Study of the Si fullerene cage isomers

Zacharias G. Fthenakis^{1,2},

Remco W. A. Havenith³, Madhu Menon^{4,5} and Patrick W. Fowler⁶

¹Institute of Electronic Structure and Laser - FORTH, Greece
²Department of Physics, University of Crete, Greece
³Debye Institute, Utrecht University, The Netherlands
⁴Department of Physics and Astronomy, University of Kentucky, USA
⁵Center for Computational Sciences, University of Kentucky, USA
⁶Department of Chemistry, University of Exeter, UK

Fullerenes

Fullerenes

Definition:

Closed-cage structures constructed by only pentagonal and hexagonal rings

Fullerenes

Definition:

Closed-cage structures constructed by only pentagonal and hexagonal rings

(All the atoms are three-fold co-ordinated $\implies sp^2$ -like bonding)

C_{60} Buckminsterfullerene

H.W.Kroto, J.R.Heath, S.C.O'Brien, R.F.Curl and R.E.Smalley, Nature, **318**, 162, (1985)

... but not only C_{60}

E.A.Rohlfing, D.M.Cox and A.Kaldor, J.Chem.Phys. **81**, 3322, (1984)

How many pentagons and hexagons ?

As a consequence of the Euler's theorem for the geometrical solids, an N-atom fullerene has:

How many pentagons and hexagons ?

As a consequence of the Euler's theorem for the geometrical solids, an N-atom fullerene has: \iint

• 12 pentagons

$$\frac{N}{2}$$
-10 hexagons

$$N = 20, 24, 26, \dots, 2n, \quad n \in \mathbb{N}$$

How many pentagons and hexagons ?

As a consequence of the Euler's theorem for the geometrical solids, an N-atom fullerene has: \bigvee

- 12 pentagons
- $\frac{N}{2}$ -10 hexagons

$$N = 20, 24, 26, \dots, 2n, \quad n \in \mathbb{N}$$

Different arrangement of the pentagons and the hexagons gives different structures (isomers)

How many isomers are they ?

N	Isomers	N	Isomers	Ν	Isomers
20	1	42	45	62	2385
24	1	44	89	64	3465
26	1	46	116	66	4487
28	2	48	199	68	6332
30	3	50	271	70	8149
32	6	52	437	72	11190
34	6	54	580	74	14246
36	15	56	924	76	19151
38	17	58	1205	78	24109
40	40	60	1812	80	31924

P.W.Fowler and D.E.Manolopoulos, *An atlas of fullerenes*, (Oxford: Clarendon Press), 1995

What about Si fullerenes ?Bonding:C: sp^1, sp^2, sp^3 Si: $sp^3 + dangling bonds$

What about Si fullerenes ?Bonding:C : sp^1, sp^2, sp^3 Si : mainly sp^3 + dangling bonds

General Conclusions for Si fullerenes:

What about Si fullerenes ?Bonding:C: sp^1, sp^2, sp^3 Si:mainly $sp^3 + dangling bonds$

General Conclusions for Si fullerenes:

• Thermodynamically unstable structures (local minima of the PES)

What about Si fullerenes ?Bonding:C : sp^1, sp^2, sp^3 Si : mainly $sp^3 + dangling bonds$

General Conclusions for Si fullerenes:

- Thermodynamically unstable structures (local minima of the PES)
- They look like "puckered" balls (the Si atoms move radially inwards and outwards)

What about Si fullerenes ?Bonding:C: sp^1, sp^2, sp^3 Si:mainly $sp^3 + dangling bonds$

General Conclusions for Si fullerenes:

- Thermodynamically unstable structures (local minima of the PES)
- They look like "puckered" balls (the Si atoms move radially inwards and outwards)

• Si surfaces

- Si surfaces
- Si-C heterofullerenes and nanotubes

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes
- Si fullerene-like endohedral clusters

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes
- Si fullerene-like endohedral clusters
- Si clathrates

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes
- Si fullerene-like endohedral clusters
- Si clathrates

Consequently: Si fullerenes are of interest

To date studied Si fullerenes

• Not any systematic study of Si fullerenes and their isomers

To date studied Si fullerenes

- Not any systematic study of Si fullerenes and their isomers
- Focused on highly symmetric starting structures (for example I_h Si₆₀)

To date studied Si fullerenes

- Not any systematic study of Si fullerenes and their isomers
- Focused on highly symmetric starting structures (for example *I_h* Si₆₀)
- Studied structures: Si_N, N = 20 - 32, 36, 44, 50, 60, 70

The system under consideration

Si₃₈

all the 17 isomers

and

Si₂₀

for comparison

• Molecular Dynamics At Constant Temperature

$$m\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i V - m\gamma \frac{E_K - E_T}{E_K} \frac{d\mathbf{r}_i}{dt}$$
$$E_K = \sum_{i=1}^N \frac{1}{2} m_i v_i^2 \qquad E_T = \frac{f}{2} k_B T$$

H.J.C.Berendsen, J.P.M.Postma, W.F. van Gunsteren, A.DiNola and J.R.Haak, J.Chem.Phys. 81, 3684, (1984)

• Molecular Dynamics At Constant Temperature

$$m\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i V - m\gamma \frac{E_K - E_T}{E_K} \frac{d\mathbf{r}_i}{dt}$$
$$E_K = \sum_{i=1}^N \frac{1}{2} m_i v_i^2 \qquad E_T = \frac{f}{2} k_B T$$

H.J.C.Berendsen, J.P.M.Postma, W.F. van Gunsteren, A.DiNola and J.R.Haak, J.Chem.Phys. 81, 3684, (1984)

• If first neigbour's distances > cut off distance then freezing the motions (i.e. $v_i = 0$)

• Molecular Dynamics At Constant Temperature

$$m\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i V - m\gamma \frac{E_K - E_T}{E_K} \frac{d\mathbf{r}_i}{dt}$$
$$E_K = \sum_{i=1}^N \frac{1}{2}m_i v_i^2 \qquad E_T = \frac{f}{2}k_B T$$

H.J.C.Berendsen, J.P.M.Postma, W.F. van Gunsteren, A.DiNola and J.R.Haak, J.Chem.Phys. 81, 3684, (1984)

- If first neigbour's distances > cut off distance then freezing the motions (i.e. $v_i = 0$)
- Evolution of V = V(t) in time under constant temperature

 Minima of V(t) configurations: Initials for damping molecular dynamics

- Minima of V(t) configurations: Initials for damping molecular dynamics
- Damping Molecular Dynamics

$$m\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i V \qquad \mathbf{v}_i(t+\delta t) = 0.99\mathbf{v}_i(t)$$

- Minima of V(t) configurations: Initials for damping molecular dynamics
- Damping Molecular Dynamics

$$m\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i V \qquad \mathbf{v}_i(t+\delta t) = 0.99\mathbf{v}_i(t)$$

Configuration of the global energy minimum

- Minima of V(t) configurations: Initials for damping molecular dynamics
- Damping Molecular Dynamics

$$m\frac{d^2\mathbf{r}_i}{dt^2} = -\nabla_i V \qquad \mathbf{v}_i(t+\delta t) = 0.99\mathbf{v}_i(t)$$

• Configuration of the global energy minimum

In agreement with the Cambridge Cluster Database for the first 100 Lenard-Jones clusters (http://www-wales.ch.cam.ac.uk/CCD.html)

38-atom fullerene isomers

Table A.3. Fullerene isomers of C_{38}

Isomer	Ring spiral	Point group	NMR pattern	Vibrations	Pentagon indices	Band gap	Transformations
38:1	1 2 3 4 5 7 15 17 18 19 20 21	C_2	19×2	108, 108, 108	022620	0.0312	3(2)
38:2	1 2 3 4 5 9 13 17 18 19 20 21	D_{3h}	1×2, 2×6, 2×12	28, 47, 19	006060	0.0000	
38:3	1 2 3 4 5 12 13 15 17 19 20 21	C_1	38×1	108, 108, 108	033510	0.0691	1, 3(2), 5, 10
38:4	1 2 3 4 5 13 14 15 17 18 19 21	C_1	38×1	108, 108, 108	015510	0.1427	4, 5, 6, 7
38:5	1 2 3 4 7 11 12 15 17 19 20 21	C_1	38×1	108, 108, 108	034500	0.1402	3, 4, 6, 8, 10, 11, 13
38:6	1 2 3 4 7 11 13 15 17 18 20 21	C_2	19×2	108, 108, 108	024600	0.2069	4(2), 5(2), 10
38:7	1 2 3 4 7 11 13 16 17 19 20 21	C_1	38×1	108, 108, 108	016500	0.0652	4, 7, 11
38:8	1 2 3 4 11 12 13 14 16 17 20 21	C_1	38×1	108, 108, 108	018300	0.0982	5, 9, 11, 13, 14(2), 17
38:9	1 2 3 4 11 12 14 15 16 18 19 21	D_3	1×2, 6×6	53, 55, 36	006600	0.1973	8(6)
38:10	1 2 3 5 7 10 12 15 17 19 20 21	C_2	19×2	108, 108, 108	044400	0.0177	3(2), 5(2), 6, 10(2), 13(2)
38:11	1 2 3 5 7 10 14 16 17 18 19 20	C_1	38×1	108, 108, 108	018300	0.1099	5, 7, 8, 14
38:12	1 2 3 5 7 11 14 16 17 18 20 21	C_{2v}	5×2, 7×4	83, 108, 83	008400	0.0045	
38:13	$1\ 2\ 3\ 5\ 10\ 11\ 13\ 15\ 16\ 19\ 20\ 21$	C_2	19×2	108, 108, 108	028200	0.1505	5(2), 8(2), 10(2), 13, 17(2)
38:14	1 2 3 5 10 12 14 15 16 17 19 20	C_1	38×1	108, 108, 108	0110100	0.1036	8(2), 11, 15, 16, 17
38:15	1 2 3 5 11 12 14 15 16 17 18 20	C_{2v}	7×2, 6×4	84, 108, 84	0 0 10 2 0 0	0.0311	14(4)
38:16	1 2 3 10 11 12 13 14 15 16 17 18	C_{3v}	2×1, 4×3, 4×6	57, 57, 57	0012000	0.0454	14(6)
38:17	1 2 4 7 9 10 12 13 15 18 20 21	C_2	19×2	108, 108, 108	0210000	0.3004	8(2), 13(2), 14(2), 17(2)

38-atom fullerene isomers

Optimized Structures

Cohesive Energy

Comparison between Si_{38} and Si_{20}

Cohesive energy				
Method	Difference			
OTBMD	0.1171 eV			
GTBMD	$0.0385 \; eV$			
DFT/B3LYP	0.0809 eV			

Comparison between Si_{38} and Si_{20}

Cohesive energy				
Method	Difference			
OTBMD	0.1171 eV			
GTBMD	$0.0385 \; eV$			
DFT/B3LYP	0.0809 eV			

Marsen and Sattler assumptions:

- The smallest Si fullerenes are the most stable
- For Si a fused pentagon rule can replace the IPR of C fullerenes

B. Marsen and K. Sattler, Phys. Rev. B 60, 11593, (1999)

Bond Lengths

Sum of the three bond associated angles for ideal cases

> For n_p pentagons $(n_p = 0, 1, 2, 3)$ sum = $360^o - 12^o n_p$

 $\begin{array}{rl} 3 \text{ hexagons} & 360^{\circ} \\ 2 \text{ hexagons} + 1 \text{ pentagon} & 348^{\circ} \\ 1 \text{ hexagon} + 2 \text{ pentagons} & 336^{\circ} \\ 3 \text{ pentagons} & 324^{\circ} \\ \text{tetrahedral arrangement} & 328.41^{\circ} \\ \text{not hybridized bonding} & 270^{\circ} \end{array}$

Distribution of the sum of the three bond associated angles

Acknowledgments

- Prof. A.N.Andriotis
- This work was partially supported by EU TMR Network "USEFULL"

Study of the Si fullerene cage isomers – p. 22

Study of the Si fullerene cage isomers – p. 23

The Si(110) surface

M.Menon, N.N.Lathiotakis, and A.N.Andriotis, Phys. Rev. B **56**, 1412, (1997)

Si-C nanotubes

Back

M.Menon, E.Richter, A.Mavrandonakis, G.Froudakis, and A.N.Andriotis, Phys. Rev. B **69**, 115322, (2004)

Si nanowires and nanotubes

B.Marsen andK.Sattler, Phys. Rev.B 60, 11593, (1999)

Si fullerene-like endohedral clusters

Q.Sun, Q.Wang, P.Jena, B.K.Rao, and Y.Kawazoe, Phys. Rev. Lett. **90**, 135503, (2003)

Si clathrates

A.San-Miguel, P.Keghelian, X.Blase, P.Melinon, A.Perez, J.P.Itie, A.Polian, E.Reny, C.Cros, and M.Pouchard, Phys. Rev. Lett. **83** 5290, (1999)

ve Y Z_X

