Study of the Si fullerene cage isomers

Zacharias G. Fthenakis1,2, Remco W. A. Havenith3, Madhu Menon4,5 and Patrick W. Fowler6

1Institute of Electronic Structure and Laser - FORTH, Greece
2Department of Physics, University of Crete, Greece
3Debye Institute, Utrecht University, The Netherlands
4Department of Physics and Astronomy, University of Kentucky, USA
5Center for Computational Sciences, University of Kentucky, USA
6Department of Chemistry, University of Exeter, UK
Fullerenes

Definition:
Definition:
Closed-cage structures constructed by only pentagonal and hexagonal rings.
Fullerenes

Definition:

Closed-cage structures constructed by only pentagonal and hexagonal rings

(All the atoms are three-fold co-ordinated \(\Rightarrow sp^2\)-like bonding)
C_{60} Buckminsterfullerene

...but not only C_{60}

How many pentagons and hexagons?

As a consequence of the Euler’s theorem for the geometrical solids, an N-atom fullerene has:
How many pentagons and hexagons?

As a consequence of the Euler’s theorem for the geometrical solids, an N-atom fullerene has:

- 12 pentagons
- \(\frac{N}{2} - 10 \) hexagons

\[N = 20, 24, 26, \ldots, 2n, \quad n \in \mathbb{N} \]
How many pentagons and hexagons?

As a consequence of the Euler’s theorem for the geometrical solids, an N-atom fullerene has:

- 12 pentagons
- \(\frac{N}{2} - 10 \) hexagons

\[N = 20, 24, 26, \ldots, 2n, \quad n \in \mathbb{N} \]

Different arrangement of the pentagons and the hexagons gives different structures (isomers)
How many isomers are they?

<table>
<thead>
<tr>
<th>N</th>
<th>Isomers</th>
<th>N</th>
<th>Isomers</th>
<th>N</th>
<th>Isomers</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1</td>
<td>42</td>
<td>45</td>
<td>62</td>
<td>2385</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>44</td>
<td>89</td>
<td>64</td>
<td>3465</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>46</td>
<td>116</td>
<td>66</td>
<td>4487</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>48</td>
<td>199</td>
<td>68</td>
<td>6332</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>50</td>
<td>271</td>
<td>70</td>
<td>8149</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>52</td>
<td>437</td>
<td>72</td>
<td>11190</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>54</td>
<td>580</td>
<td>74</td>
<td>14246</td>
</tr>
<tr>
<td>36</td>
<td>15</td>
<td>56</td>
<td>924</td>
<td>76</td>
<td>19151</td>
</tr>
<tr>
<td>38</td>
<td>17</td>
<td>58</td>
<td>1205</td>
<td>78</td>
<td>24109</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>60</td>
<td>1812</td>
<td>80</td>
<td>31924</td>
</tr>
</tbody>
</table>

What about Si fullerenes?

Bonding:

C : sp^1, sp^2, sp^3

Si : mainly sp^3 + dangling bonds
What about Si fullerenes?

Bonding:

\[\text{C} : \quad sp^1, \quad sp^2, \quad sp^3 \]

\[\text{Si} : \quad \text{mainly} \quad sp^3 + \text{dangling bonds} \]

General Conclusions for Si fullerenes:
What about Si fullerenes?

Bonding:

- C: \(sp^1, sp^2, sp^3\)
- Si: mainly \(sp^3\) + dangling bonds

General Conclusions for Si fullerenes:

- Thermodynamically unstable structures (local minima of the PES)
What about Si fullerenes?

Bonding:

C : sp^1, sp^2, sp^3

Si : mainly sp^3 + dangling bonds

General Conclusions for Si fullerenes:

- Thermodynamically unstable structures (local minima of the PES)
- They look like "puckered" balls (the Si atoms move radially inwards and outwards)
What about Si fullerenes?

Bonding:
- C: sp^1, sp^2, sp^3
- Si: mainly sp^3 + dangling bonds

General Conclusions for Si fullerenes:

- Thermodynamically unstable structures (local minima of the PES)
- They look like "puckered" balls (the Si atoms move radially inwards and outwards)

However ...
Three-fold co-ordinated and/or fullerene-like Si systems

- Si surfaces
Three-fold co-ordinated and/or fullerene-like Si systems

- Si surfaces
- Si-C heterofullerenes and nanotubes
Three-fold co-ordinated and/or fullerene-like Si systems

- **Si surfaces**
- **Si-C heterofullerenes and nanotubes**
- **Si nanowires and nanotubes**
Three-fold co-ordinated and/or fullerene-like Si systems

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes
- Si fullerene-like endohedral clusters
Three-fold co-ordinated and/or fullerene-like Si systems

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes
- Si fullerene-like endohedral clusters
- Si clathrates
Three-fold co-ordinated and/or fullerene-like Si systems

- Si surfaces
- Si-C heterofullerenes and nanotubes
- Si nanowires and nanotubes
- Si fullerene-like endohedral clusters
- Si clathrates

Consequently: Si fullerenes are of interest
To date studied Si fullerenes

• Not any systematic study of Si fullerenes and their isomers
To date studied Si fullerenes

- Not any systematic study of Si fullerenes and their isomers
- Focused on highly symmetric starting structures (for example $I_h \text{Si}_{60}$)
To date studied Si fullerenes

- Not any systematic study of Si fullerenes and their isomers
- Focused on highly symmetric starting structures (for example $I_h \text{ Si}_{60}$)
- Studied structures: Si_N, $N = 20 - 32, 36, 44, 50, 60, 70$
The system under consideration

Si_{38}

all the 17 isomers

and

Si_{20}

for comparison
The method for Global Optimization I

- **Molecular Dynamics At Constant Temperature**

\[m \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i V - m\gamma \frac{E_K - E_T}{E_K} \frac{d\mathbf{r}_i}{dt} \]

\[E_K = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \quad E_T = \frac{f}{2} k_B T \]

The method for Global Optimization I

- **Molecular Dynamics At Constant Temperature**

\[m \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i V - m\gamma \frac{E_K - E_T}{E_K} \frac{d \mathbf{r}_i}{dt} \]

\[E_K = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \quad E_T = \frac{f}{2} k_B T \]

- If first neighbour’s distances > cut off distance then freezing the motions (i.e. \(v_i = 0 \))
The method for Global Optimization I

• Molecular Dynamics At Constant Temperature

\[m \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i V - m\gamma \frac{E_K - E_T}{E_K} \frac{d\mathbf{r}_i}{dt} \]

\[E_K = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \quad E_T = \frac{f}{2} k_B T \]

• If first nearest neighbour’s distances > cut off distance then freezing the motions (i.e. \(v_i = 0 \))

• Evolution of \(V = V(t) \) in time under constant temperature
The method for Global Optimization II

• Minima of $V(t)$ configurations: Initials for damping molecular dynamics
The method for Global Optimization II

• Minima of $V(t)$ configurations: Initials for damping molecular dynamics

• Damping Molecular Dynamics

$$m \frac{d^2 r_i}{dt^2} = -\nabla_i V \quad v_i(t + \delta t) = 0.99v_i(t)$$
The method for Global Optimization II

- Minima of $V(t)$ configurations: Initials for damping molecular dynamics

- Damping Molecular Dynamics

$$m \frac{d^2 r_i}{dt^2} = -\nabla_i V \quad v_i(t + \delta t) = 0.99 v_i(t)$$

- Configuration of the global energy minimum
The method for Global Optimization II

- Minima of $V(t)$ configurations: Initials for damping molecular dynamics

- Damping Molecular Dynamics

\[m \frac{d^2 r_i}{dt^2} = -\nabla_i V \quad v_i(t + \delta t) = 0.99 v_i(t) \]

- Configuration of the global energy minimum

In agreement with the Cambridge Cluster Database for the first 100 Lenard-Jones clusters

(http://www-wales.ch.cam.ac.uk/CCD.html)
38-atom fullerene isomers

Table A.3. Fullerene isomers of C\(_{38}\)

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Ring spiral</th>
<th>Point group</th>
<th>NMR pattern</th>
<th>Vibrations</th>
<th>Pentagon indices</th>
<th>Band gap</th>
<th>Transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>38:1</td>
<td>1 2 3 4 5 7 15 17 18 19 20 21</td>
<td>(C_2)</td>
<td>19×2</td>
<td>108, 108, 108</td>
<td>0 2 6 2 0</td>
<td>0.0312</td>
<td>3(2)</td>
</tr>
<tr>
<td>38:2</td>
<td>1 2 3 4 5 9 13 17 18 19 20 21</td>
<td>(D_{3h})</td>
<td>1×2, 2×6, 2×12</td>
<td>28, 47, 19</td>
<td>0 0 6 0 6 0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>38:3</td>
<td>1 2 3 4 5 12 13 15 17 19 20 21</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 3 3 5 1 0</td>
<td>0.0691</td>
<td>1, 3(2), 5, 10</td>
</tr>
<tr>
<td>38:4</td>
<td>1 2 3 4 5 13 14 15 17 18 19 21</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 1 5 5 1 0</td>
<td>0.1427</td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>38:5</td>
<td>1 2 3 4 7 11 12 15 17 19 20 21</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 3 4 5 0 0</td>
<td>0.1402</td>
<td>3, 4, 6, 8, 10, 11, 13</td>
</tr>
<tr>
<td>38:6</td>
<td>1 2 3 4 7 11 13 15 17 18 20 21</td>
<td>(C_2)</td>
<td>19×2</td>
<td>108, 108, 108</td>
<td>0 2 4 6 0 0</td>
<td>0.2069</td>
<td>4(2), 5(2), 10</td>
</tr>
<tr>
<td>38:7</td>
<td>1 2 3 4 7 11 13 16 17 19 20 21</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 1 6 5 0 0</td>
<td>0.0652</td>
<td>4, 7, 11</td>
</tr>
<tr>
<td>38:8</td>
<td>1 2 3 4 7 11 13 14 16 17 20 21</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 1 8 3 0 0</td>
<td>0.0982</td>
<td>5, 9, 11, 13, 14(2), 17</td>
</tr>
<tr>
<td>38:9</td>
<td>1 2 3 4 11 12 14 15 16 18 21</td>
<td>(D_3)</td>
<td>1×2, 6×6</td>
<td>53, 55, 36</td>
<td>0 0 6 6 0 0</td>
<td>0.1973</td>
<td>8(6)</td>
</tr>
<tr>
<td>38:10</td>
<td>1 2 3 5 7 10 12 15 17 19 20 21</td>
<td>(C_2)</td>
<td>19×2</td>
<td>108, 108, 108</td>
<td>0 4 4 4 0 0</td>
<td>0.0177</td>
<td>3(2), 5(2), 6, 10(2), 13(2)</td>
</tr>
<tr>
<td>38:11</td>
<td>1 2 3 5 7 10 14 16 17 18 19 20</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 1 8 3 0 0</td>
<td>0.1099</td>
<td>5, 7, 8, 14</td>
</tr>
<tr>
<td>38:12</td>
<td>1 2 3 5 7 11 14 16 17 18 20 21</td>
<td>(C_{2v})</td>
<td>5×2, 7×4</td>
<td>83, 108, 83</td>
<td>0 0 8 4 0 0</td>
<td>0.0045</td>
<td></td>
</tr>
<tr>
<td>38:13</td>
<td>1 2 3 5 10 11 13 15 16 17 19 20</td>
<td>(C_2)</td>
<td>19×2</td>
<td>108, 108, 108</td>
<td>0 2 8 2 0 0</td>
<td>0.1505</td>
<td>5(2), 8(2), 10(2), 13, 17(2)</td>
</tr>
<tr>
<td>38:14</td>
<td>1 2 3 5 10 12 14 15 16 17 19 20</td>
<td>(C_1)</td>
<td>38×1</td>
<td>108, 108, 108</td>
<td>0 1 0 1 0 0</td>
<td>0.1036</td>
<td>8(2), 11, 15, 16, 17</td>
</tr>
<tr>
<td>38:15</td>
<td>1 2 3 5 11 12 14 15 16 17 18 20</td>
<td>(C_{2v})</td>
<td>7×2, 6×4</td>
<td>84, 108, 84</td>
<td>0 0 10 2 0 0</td>
<td>0.0311</td>
<td>14(4)</td>
</tr>
<tr>
<td>38:16</td>
<td>1 2 3 10 11 12 13 14 15 16 17 18</td>
<td>(C_{3v})</td>
<td>2×1, 4×3, 4×6</td>
<td>57, 57, 57</td>
<td>0 0 12 0 0 0</td>
<td>0.0454</td>
<td>14(6)</td>
</tr>
<tr>
<td>38:17</td>
<td>1 2 4 7 9 10 12 13 15 18 20 21</td>
<td>(C_2)</td>
<td>19×2</td>
<td>108, 108, 108</td>
<td>0 2 10 0 0 0</td>
<td>0.3004</td>
<td>8(2), 13(2), 14(2), 17(2)</td>
</tr>
</tbody>
</table>
38-atom fullerene isomers
Optimized Structures

Si_{38}

Si_{20}

OTBMD GTBMD DFT/B3LYP
Cohesive Energy

![Cohesive Energy Graph]

- **Cohesive Energy (meV)**
- **Isomer number**

Graph showing the cohesive energy as a function of isomer number for two different methods: GTBMD and DFT/B3LYP.
Comparison between \(\text{Si}_{38} \) and \(\text{Si}_{20} \)

Cohesive energy

<table>
<thead>
<tr>
<th>Method</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTBMD</td>
<td>0.1171 eV</td>
</tr>
<tr>
<td>GTBMD</td>
<td>0.0385 eV</td>
</tr>
<tr>
<td>DFT/B3LYP</td>
<td>0.0809 eV</td>
</tr>
</tbody>
</table>
Comparison between Si_{38} and Si_{20}

<table>
<thead>
<tr>
<th>Method</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTBMD</td>
<td>0.1171 eV</td>
</tr>
<tr>
<td>GTBMD</td>
<td>0.0385 eV</td>
</tr>
<tr>
<td>DFT/B3LYP</td>
<td>0.0809 eV</td>
</tr>
</tbody>
</table>

Marsen and Sattler assumptions:

- The smallest Si fullerenes are the most stable
- For Si a fused pentagon rule can replace the IPR of C fullerenes

Bond Lengths

![Graph showing bond length thresholds for Si$_{38}$ and Si$_{20}$ with different methods: OTBMD, GTBMD, and DFT/B3LYP.](image)
Sum of the three bond associated angles for ideal cases

For \(n_p \) pentagons (\(n_p = 0, 1, 2, 3 \))
\[
\text{sum} = 360^\circ - 12^\circ n_p
\]

- 3 hexagons: \(360^\circ \)
- 2 hexagons + 1 pentagon: \(348^\circ \)
- 1 hexagon + 2 pentagons: \(336^\circ \)
- 3 pentagons: \(324^\circ \)
- Tetrahedral arrangement: \(328.41^\circ \)
- Not hybridized bonding: \(270^\circ \)
Distribution of the sum of the three bond associated angles
Acknowledgments

• Prof. A.N. Andriotis
• This work was partially supported by EU TMR Network "USEFULL"
The Si(110) surface

Si-C nanotubes

M. Menon, E. Richter, A. Mavrandomakis, G. Froudakis, and A. N. Andriotis,
Si nanowires and nanotubes

Si fullerene-like endohedral clusters

Q. Sun, Q. Wang, P. Jena, B. K. Rao, and Y. Kawazoe,
Si clathrates

Si20

Study of the Si fullerene cage isomers – p. 29