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Fullerenes

Definition:

Closed-cage structures
constructed by only

pentagonal and hexagonal rings

(All the atoms are three-fold co-ordinated
=⇒ sp2-like bonding)
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C60 Buckminsterfullerene

H.W.Kroto, J.R.Heath,

S.C.O’Brien, R.F.Curl

and R.E.Smalley,

Nature,318, 162, (1985)

Study of the Si fullerene cage isomers – p. 3



. . . but not only C60

E.A.Rohlfing,

D.M.Cox and

A.Kaldor,

J.Chem.Phys.81,

3322, (1984)
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How many pentagons and hexagons ?

As a consequence of the Euler’s theorem
for the geometrical solids, an N-atom fullerene has:

⇓
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How many pentagons and hexagons ?

As a consequence of the Euler’s theorem
for the geometrical solids, an N-atom fullerene has:

⇓

• 12 pentagons

• N
2
−10 hexagons

N = 20, 24, 26, . . . , 2n, n ∈ N
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How many pentagons and hexagons ?

As a consequence of the Euler’s theorem
for the geometrical solids, an N-atom fullerene has:

⇓

• 12 pentagons

• N
2
−10 hexagons

N = 20, 24, 26, . . . , 2n, n ∈ N

Different arrangement of the pentagons and the
hexagons gives different structures (isomers)
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How many isomers are they ?

N Isomers N Isomers N Isomers

20 1 42 45 62 2385

24 1 44 89 64 3465

26 1 46 116 66 4487

28 2 48 199 68 6332

30 3 50 271 70 8149

32 6 52 437 72 11190

34 6 54 580 74 14246

36 15 56 924 76 19151

38 17 58 1205 78 24109

40 40 60 1812 80 31924

P.W.Fowler and

D.E.Manolopoulos,

An atlas of fullerenes,

(Oxford: Clarendon Press),

1995
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What about Si fullerenes ?
Bonding:
C : sp1, sp2, sp3

Si : mainly sp3 + dangling bonds
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What about Si fullerenes ?
Bonding:
C : sp1, sp2, sp3

Si : mainly sp3 + dangling bonds

General Conclusions for Si
fullerenes:

• Thermodynamically unstable structures (local
minima of the PES)

• They look like "puckered" balls (the Si atoms
move radially inwards and outwards)

However ...
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Three-fold co-ordinated and/or
fullerene-like Si systems

• Si surfaces
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Three-fold co-ordinated and/or
fullerene-like Si systems

• Si surfaces
• Si-C heterofullerenes and nanotubes
• Si nanowires and nanotubes
• Si fullerene-like endohedral clusters
• Si clathrates

Consequently: Si fullerenes are of interest
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To date studied Si fullerenes

• Not any systematic study of Si fullerenes and
their isomers
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• Not any systematic study of Si fullerenes and
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• Focused on highly symmetric starting structures
(for exampleIh Si60)
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To date studied Si fullerenes

• Not any systematic study of Si fullerenes and
their isomers

• Focused on highly symmetric starting structures
(for exampleIh Si60)

• Studied structures:
SiN , N = 20 − 32, 36, 44, 50, 60, 70
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The system under consideration

Si38

all the 17 isomers

and

Si20

for comparison
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The method for Global Optimization I
• Molecular Dynamics At Constant Temperature

m
d2

ri

dt2
= −∇iV − mγ

EK − ET

EK

dri

dt

EK =

N∑

i=1

1

2
miv

2

i ET =
f

2
kBT

H.J.C.Berendsen, J.P.M.Postma, W.F. van Gunsteren, A.DiNola and J.R.Haak, J.Chem.Phys.81, 3684, (1984)
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The method for Global Optimization I
• Molecular Dynamics At Constant Temperature

m
d2

ri

dt2
= −∇iV − mγ

EK − ET

EK

dri
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i=1
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miv
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i ET =
f

2
kBT

H.J.C.Berendsen, J.P.M.Postma, W.F. van Gunsteren, A.DiNola and J.R.Haak, J.Chem.Phys.81, 3684, (1984)

• If first neigbour’s distances > cut off distance
then freezing the motions (i.e.vi = 0)
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The method for Global Optimization I
• Molecular Dynamics At Constant Temperature

m
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ri
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= −∇iV − mγ

EK − ET
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i=1

1
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miv
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i ET =
f

2
kBT

H.J.C.Berendsen, J.P.M.Postma, W.F. van Gunsteren, A.DiNola and J.R.Haak, J.Chem.Phys.81, 3684, (1984)

• If first neigbour’s distances > cut off distance
then freezing the motions (i.e.vi = 0)

• Evolution ofV = V (t) in time under constant
temperature
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The method for Global Optimization II
• Minima of V (t) configurations: Initials for

damping molecular dynamics
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The method for Global Optimization II
• Minima of V (t) configurations: Initials for

damping molecular dynamics

• Damping Molecular Dynamics

m
d2

ri

dt2
= −∇iV vi(t + δt) = 0.99vi(t)
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• Damping Molecular Dynamics
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ri
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• Configuration of the global energy minimum

Study of the Si fullerene cage isomers – p. 12



The method for Global Optimization II
• Minima of V (t) configurations: Initials for

damping molecular dynamics

• Damping Molecular Dynamics

m
d2

ri

dt2
= −∇iV vi(t + δt) = 0.99vi(t)

• Configuration of the global energy minimum

In agreement with the Cambridge Cluster Database

for the first 100 Lenard-Jones clusters

(http://www-wales.ch.cam.ac.uk/CCD.html)
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38-atom fullerene isomers
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38-atom fullerene isomers
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Optimized Structures

OTBMD GTBMD DFT/B3LYP

Si38

Si20
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Cohesive Energy
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Comparison between Si38 and Si20

Cohesive energy
Method Difference
OTBMD 0.1171 eV
GTBMD 0.0385 eV
DFT/B3LYP 0.0809 eV
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Comparison between Si38 and Si20

Cohesive energy
Method Difference
OTBMD 0.1171 eV
GTBMD 0.0385 eV
DFT/B3LYP 0.0809 eV

Marsen and Sattler assumptions:
• The smallest Si fullerenes are the most stable
• For Si a fused pentagon rule can replace the IPR

of C fullerenes

B. Marsen and K. Sattler, Phys. Rev. B60, 11593, (1999)
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Bond Lengths
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Sum of the three bond
associated angles for ideal cases

Fornp pentagons (np = 0, 1, 2, 3)
sum =360o − 12onp

3 hexagons 360o

2 hexagons + 1 pentagon 348o

1 hexagon + 2 pentagons 336o

3 pentagons 324o

tetrahedral arrangement 328.41o

not hybridized bonding 270o
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Distribution of the sum of the
three bond associated angles
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The Si(110) surface

M.Menon, N.N.Lathiotakis,

and A.N.Andriotis,

Phys. Rev. B56,

1412, (1997)

Back
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Si-C nanotubes

Back

M.Menon, E.Richter, A.Mavrandonakis, G.Froudakis, and A.N.Andriotis,

Phys. Rev. B69, 115322, (2004)
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Si nanowires and nanotubes

B.Marsen and

K.Sattler, Phys. Rev.

B 60, 11593, (1999)

Back
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Si fullerene-like endohedral clusters

Q.Sun, Q.Wang, P.Jena, B.K.Rao, and Y.Kawazoe,

Phys. Rev. Lett.90, 135503, (2003)

Back
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Si clathrates

Back

A.San-Miguel, P.Kéghélian, X.Blase, P.Mélinon, A.Perez, J.P.Itié, A.Polian,

E.Reny, C.Cros, and M.Pouchard, Phys. Rev. Lett.83 5290, (1999)
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Si20
Active

X

Y

Z
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