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Phase control of resonantly enhanced photoionization in an optically dense medium
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We present a self-consistent theory, as well as analytical and numerical results, for the three-photon–one-
photon phase control of resonantly enhanced photoionization in an optically dense medium of xenon gas. We
show that for an optically thick medium, the standard phase-control technique has a rather limited application
since, independently of the initial relative phase between the two fields, over a very short scaled distance of
propagation the medium tends to settle such a relative phase that exactly cancels the atomic excitation. Rather
unusual results for an optically thin layer of atoms are also found.
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I. INTRODUCTION

The feasibility of the control of photoabsorption and
products through the external control of the relative phas
two electromagnetic fields of properly chosen frequenc
has by now been demonstrated theoretically@1# as well as
experimentally@2–4# in atoms and molecules. Typically, th
system is exposed to the combination of a fundamental fi
and its third harmonic, so that control can be achieved
interference between the single- and three-photon absorp
amplitudes, whose relative phase is employed as an exte
control mechanism to manipulate the interference. Many
teresting issues@3–6# have been explored and clarified, e
tablishing thus the idea as a useful tool, at least in the con
of understanding intricate aspects of atomic and molec
photointeractions. In the vast majority of papers, howev
theory and experiment have dealt only with single-atom s
ations. But, if the ideas are to be contemplated for appl
tions, such as, e.g., separation of coherent and incohe
excitations of the species entering chemical reactions@7# or
laser-induced catalyst@8#, the issue of propagation of radia
tion through the medium is crucial. Depending on the den
of the medium, propagation is known to affect the phase
the field, which in the present context is apt to have profou
effects on the very process to be controlled.

To the best of our knowledge, this issue has been ra
and investigated up to a point by Chen and Elliott@9# who
have presented experimental data along such lines as we
an interpretation in terms of rate equations. Their stu
showed evidence of nonlinear coupling of the type discus
in the sections to follow and called for ‘‘more rigorous tec
niques’’ in the approach to this basic problem. We have
fact undertaken such an approach@10# and it is the purpose
of this paper to present a complete account of the for
theory, as well as analytic~whenever possible! and numeri-
cal calculations, demonstrating that propagation does ind
have a profound influence on the whole process.

*Present address: Chemical Physics Department, Weizmann
tute of Science, Rehovot 76100, Israel.
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Before embarking on the technical aspects of this pape
may be useful to remind the reader that the issue of cohe
control through the relative phase of two fields is intimate
related to previous work dating back 20 or more years a
that was stimulated by, unexpected at that time, cancella
effects in the process of third harmonic generation@11–13#.
Specifically, it was noticed that in experiments involvin
third harmonic generation via three-photon resonance wi
bound state, the inevitably present ionization from that st
was practically canceled beyond a certain gas pressure, w
the simultaneously generated third harmonic was not. T
explanation turned out to be that the generated harmo
caused a single-photon transition to the resonant intermed
state, which interfered destructively with the three-phot
transition due to the pump radiation@13–16#. The effect of
the pressure was to produce the relative phase differe
between the two fields that was necessary for destruc
interference. The initial theoretical literature on what is no
referred to as phase control does not reflect awarenes
those earlier issues. But the papers reporting the initial
perimental results by Elliott and collaborators definitely i
dicate detailed awareness of the prehistory of the underly
effects. It can be said that in a real sense, part of the pro
was turned around. Instead of relying on the internally g
erated third harmonic, Chenet al. @2# submitted the atom to
a combination of pump radiation and its third harmonic ge
erated prior to entering the cell with the system whose i
ization was to be controlled by externally adjusting the re
tive phase of the two fields.

Propagation effects, essential in phase matching, wer
relevance in the early experiments. They were also show
be of relevance in later generalizations@17–19# of those can-
cellation effects. Related theoretical approaches had been
veloped, but had essentially stopped at the level of eit
weak-field treatment of the Maxwell-Bloch equations, or ra
equations, as they had appeared to be sufficient at the t
Thus the chief motivation in the present work was to prov
a more general approach, beyond rate equations; an appr
which, as shown in Sec. III, recaptures the rate equation
a special case.

We have chosen to address here the basic system inv
ti-
©2001 The American Physical Society17-1
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ing a resonance with a bound state, which has served a
experimental and theoretical benchmark for the study of
herent control in the single-atom context. It is then natura
first examine the issue of propagation in the same cont
which as we shall see involves a few surprises. Further iss
involving continua and autoionizing states need to also
addressed from the perspective of propagation on which
expect to report in forthcoming papers.

We have structured the paper as follows: In Sec. II
formulate a self-consistent theory that governs the time
space evolution of the fields propagating in the atomic m
dium as well as the atomic response to those fields.
fields are described in the semiclassical formalism thro
the Maxwell equations and the medium in terms of the d
sity matrix. On the basis of the developed mathematical
malism there, we present in Sec. III analytical results
tained in the rate approximation. The conditions of valid
of this approximation are discussed emphasizing the exp
mental situations that can not be handled by this appro
Section IV is devoted to the exact numerical calculatio
performed for various initial conditions without making u
of either the weak-field or rate approximations. Our conc
sions are summarized in Sec. V.

II. FORMULATION

We examine the propagation of a bichromatic electrom
netic fieldE through an optically dense medium consisting
Xe gas. This electric field is a function of timet and space
coordinatez and is composed of the fundamental and
third harmonic fields that have the same~linear! polarization
and angular frequenciesv f andvh53v f , respectively. It is
expressed as

E~z,t !5
1

2
@Efe

i (kfz2v f t)1Ehei (khz2vht)1c.c.#, ~1!

whereEj5E je
2 if j , j 5 f ,h, with Ej andf j the slowly vary-

ing in time and space real amplitude and phase of the co
sponding field, andkj5v jnjc

21 with nj[n(v j ) the refrac-
tive index of the host medium at frequencyv j . The electric
field ~1! induces the polarization

P~z,t !5
1

2
@Pfe

i (kfz2v f t)1Phei (khz2vht)1c.c.#, ~2!

wherePj5P je
2 if j is the slowly varying in time and spac

field-induced medium polarization at frequencyv j . Al-
though in our present treatment, the host medium is
vacuum with a constant refractive indexn(v)51, and thus
kh53kf , for the sake of generality, e.g., presence of a bu
gas, we shall explicitly keep in the formalism the depe
dence on the refractive index. As shown in Fig. 1, the f
quenciesvh, f are chosen so that one harmonic and th
fundamental photons are at near resonance with the tra
tion from the ground stateu5p6 1S0&[u1& to the u6s@3/2#1&
[u2& state of Xe. Further two-photon transition due to t
strong fundamental field~with an intermediate near-resona
u4 f @3/2#2& state!, or one-photon transition due to the ha
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monic field lead to the ionization continuum~statesuc&) of
the atom. As we intend to explore the intensities of the fie
for which one- and three-photon transition amplitudes
tween the statesu1& and u2& are of comparable magnitud
~ideally equal! so as to maximize the modulation depth, t
transition u2&→uc& would be dominated by the two-photo
process and the one-photon ionization can be neglected
for the polarizationPh at the frequency of the harmonic field
this simplification is further justified if one takes into accou
that the dipole matrix element between two bound sta
~i.e., u1& andu2&) is, as a rule, much larger than that betwe
a bound state and a smooth continuum (u2& and uc&).

The situation we consider would correspond to an exp
mental setup where prior to entering the Xe-vapor cell,
strong pulsed fundamental fieldEf from a laser is tripled in a
nonlinear medium and then both the fundamental and
third harmonic pass through a dispersive medium throu
which the relative phase difference between the two fie
can be controlled@2,3#.

Beginning with the second-order wave equation for t
field E(z,t),

]2E

]z2
2

n2

c2

]2E

]t2
5

1

c2e0

]2P

]t2
, ~3!

in the slowly varying during an optical cycle amplitude a
proximation, one neglects all second derivatives ofEj , j
5 f ,h, and after projecting onto the corresponding mo
function exp@i(vjt2kjz)#, one arrives at

]Ej

]z
1

nj

c

]Ej

]t
5

1

ce0nj
F i

v j

2
Pj2

]Pj

]t G . ~4!

The most general approach to the calculation of the
sponse of the medium is through the atomic-density ma
r, which obeys the master equation

FIG. 1. Energy levels of Xe atom interacting with two electr
magnetic fields.~Note that one fundamental photon cannot go in
continuum.!
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PHASE CONTROL OF RESONANTLY ENHANCED . . . PHYSICAL REVIEW A63 043417
]

]t
r52

i

\
@Hatom1D,r#, ~5!

whereHatom5(n\vnun&^nu is the free atomic Hamiltonian
~the sum here and below is generalized to include summa
over discrete and integration over continuum states:(n
→(n1*c dvc) and D52mE is the atom-field interaction
in the dipole approximation withm being the electric-dipole
operator. Introducing the rotating-wave approximation a
adiabatically eliminating the continuum and all virtual~non-
resonant! bound states connecting by the lowest-order pa
the statesu1& and u2&, the slowly varying density-matrix el
ements of these statess11.r11, s22.r22, and s21
.r21exp@i3(vf t1ff2kfz)#, are found to obey the following
set of equations:

]

]t
s115gs222ImF S m12

(3)

\
E f

31eiu
m12

\
EhDs21G , ~6a!

]

]t
s2252~g1g ion!s221ImF S m12

(3)

\
E f

31eiu
m12

\
EhDs21G ,

~6b!

]

]t
s2152FG1 i S D23

]f f

]t D1 i
s12s2

2\
E f

2Gs21

1 i S m21
(3)

2\
E f

31e2 iu
m21

2\
EhD ~s112s22!. ~6c!

In these equations all the yet undefined symbols areg the
radiative decay rate of levelu2&,

g ion5
1

2\2
E f

4 Im(
c

um2c
(2)u2

vc222v f
5

pum2c
(2)uvc5v212v f

2

2\2
E f

4

the two-photon ionization rate fromu2&,

G5
g1g ion

2
1gNR

the total relaxation rate of the atomic coherence, which c
tains also nonradiative dephasinggNR due to atomic colli-
sions and laser-field fluctuations,

m2c
(2)5

1

2\ (
m

m2mmmc

vm22v f
,

m12
(3)5

1

~2\!2 (
n,m

m1nmnmmm2

~vn12v f !~v f2v2m!

the effective two- and three-photon matrix elements for
fundamental field on the transitionsu2&→uc& and u1&→u2&,
respectively,

s15
1

\ (
n

vn1um1nu2

vn1
2 2v f

2
,

04341
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\ (
m

v2mumm2u2

v f
22v2m

2

the lowest-order ac Stark-shift coefficients~polarizabilities!
of levels u1& and u2&, mnm[^numum& the ~ordinary! matrix
element of the electric-dipole operatorm, and vnm[vn
2vm is the energy difference between levelsun& and um&.
Finally D5v2123v f5v212vh is the detuning of both
fields from theu1&→u2& transition resonance andu5(fh
23f f)2(kh23kf)z is their relative phase.

Consider now the polarization of the medium of atom
densityN

P~z,t !5N Tr@mr#5N(
n,m

mnmrmn . ~7!

In expanding the trace of this equation, we again follow t
same procedure as in obtaining Eqs.~6!, i.e., we use the
adiabatic approximation to express all density-matrix e
ments that do not refer to the statesu1& and u2& through the
three main elementss11, s22, ands21. Equating the result
with Eq. ~2!, after identifying and grouping together term
oscillating with the same frequencies, we obtain

Pf52N@Ef~s1s111s2s22!13m12
(3)E f

2s21

1 ip\21um2c
(2)u2E f

3s22#, ~8a!

Ph52Nm12s21e
iu. ~8b!

These equations, together with the Maxwell equation~4! and
the atomic-density matrix equations~6!, provide a complete
self-consistent description of our system.

III. RATE APPROXIMATION

When dealing with pulse propagation problems, it is us
ally convenient to make the rate approximation that cons
basically in setting the time derivative in the differenti
equation fors21 equal to zero. This implies the assumptio
that the dephasing rateG of atomic coherence is grater tha
the rates of change of the~normalized! field amplitude and
population differences112s22. Thus, for example, in an
experiment with a relatively low power and large amplitu
and/or phase fluctuations laser, when the totalG dominates
over the Rabi frequencies of the fields, the rate approxim
tion is justified. As we show in the present section, this a
proximation allows for a simple analytical description of th
system. If, however, a high-intensity narrow~Fourier lim-
ited! band laser output is required, the pulse duration is sh
so that in such experiments the conditions of validity of t
rate approximation are typically not satisfied. Then the r
orous solution of the problem must be performed nume
cally which is the purpose of the next section.

For the analysis in this section, it is convenient to rewr
the density-matrix equations~6! transformed to the rotating
frame of (vht2khz), i.e., s̃11.r11, s̃22.r22, and s̃21
.r21exp@i(vht2khz)#:
7-3



m

m

a
d

el
c
ld

and
the
is

lso
xi-
tly

ve

q.

f
l
that

the

DAVID PETROSYAN AND P. LAMBROPOULOS PHYSICAL REVIEW A63 043417
]

]t
s̃115gs̃222ImF S m12

\
Eh* 1eidkz

m12
(3)

\
Ef*

3D s̃21G , ~9a!

]

]t
s̃2252~g1g ion!s̃221ImF S m12

\
Eh* 1eidkz

m12
(3)

\
Ef*

3D s̃21G ,
~9b!

]

]t
s̃2152~G1 i D̃ !s̃211 i S m21

2\
Eh1e2 idkz

m21
(3)

2\
Ef

3D
3~ s̃112s̃22!, ~9c!

where dk5kh23kf and D̃5D1(s12s2)uEf u2/2\. Making
the rate approximation, we obtain

s̃21~z!.
d~z!

D̃2 iG
S m21

2\
Eh1e2 idkz

m21
(3)

2\
Ef

3D , ~10!

with d(z)5s̃112s̃22 the slowly varying population differ-
ence. Substitution of this equation into Eqs.~9a! and ~9b!
leads to the simple rate equations

] ts̃115gs̃222bd, ~11a!

] ts̃2252~g1g ion!s̃221bd, ~11b!

where

b5
2G

D̃21G2 Um21

2\
Eh1e2 idkz

m21
(3)

2\
Ef

3U2

is the rate of stimulated transition fromu1& to u2&. Defining
the real one- and three-photon Rabi frequenciesV12

5m12Eh/2\ and V12
(3)5m12

(3)E f
3/2\, respectively, it can be

written in a form

b~u!5
2G

D̃21G2
~V12

2 1V12
(3)212V12V12

(3) cosu! ~12!

that indicates most explicitly the interference arising fro
the variation of the relative phaseu @1,2#. Obviously, this
effect is maximal ifV12.V12

(3)5V. Then Eq.~12! simplifies
to

b~u!5
4V2G

D̃21G2
~11cosu!, ~13!

which reveals that, with increasing relative phaseu from 0 to
p, the stimulated transition rate decreases from its maxi
value b(0)5(8V2G)/(D̃21G2), when the two Rabi fre-
quencies interfere constructively, tob(p)50 when the inter-
ference is completely destructive.

Consider next the evolution of the field. To have comp
rable Rabi frequencies, the fundamental-field amplitu
should be taken much larger than that of the harmonic fi
since the three-photon transition-matrix element is mu
smaller than the single-photon one. Then, as the two fie
04341
al

-
e
d,
h
s

propagate, one can neglect the change of the amplitude
phase of the fundamental and concentrate only on
harmonic-field evolution. For the system we consider, this
indeed a very good approximation, as will be shown a
quantitatively in Sec. IV. Consistently with the rate appro
mation, we assume further that the field varies significan
slowly for the time derivatives in Eq.~4! to be ignored. Thus,
for the stationary propagation of the harmonic field, we ha
the equation

]Ej

]z
5 i

vhNm12

ce0nh
s̃21. ~14!

Substituting here Eq.~10! and defining

a5
Nvhm12d~z!

2\ce0nh

D̃1 iG

D̃21G2
,

we obtain the differential equation for the harmonic field

]zEh5 ia~m21Eh1e2 idkzm21
(3)Ef

3!. ~15!

Assumingd(z) does not change significantly alongz, which
is quite reasonable in the weak-field limit whens̃22!1 and
d(z).s̃11;1, Eq. ~15! can be solved analytically with the
result

Eh~z!

5
@~dk1am21!Eh~0!1am21

(3)Ef
3#eiam21z2am21

(3)Ef
3e2 idkz

dk1am21
.

~16!

For distances of propagation

z@
1

Im @a# m21
5

2\ce0nh~D̃21G2!

Nvhum12u2Gd~z!
[z, ~17!

the term in front of the first exponent in the numerator of E
~16!, which contains the initial fieldEh(0), is totally damped
away and we are left with the simple expression

Eh~z!.2
m21

(3)

m21
Ef

3e2 idkz, ~18!

or, equivalently,

m21Eh~z!.m21
(3)E f

3 , u.p. ~19!

This is a ‘‘z-steady’’ solution of Eq.~15! as one could have
easily guessed even without solving it. Since Im@a#.0, it is
also a stable solution, i.e., small fluctuations ofEh decay
away asz increases. The point for solving Eq.~15! is to
establish condition~17!, which tells us that, independently o
the initial amplitude and phase, over a distance of severaz,
the harmonic field acquires such an amplitude and phase
its Rabi frequency equates with the Rabi frequency of
fundamental, the relative phase becomesp, and conse-
quently, the stimulated transition rateb vanishes. With the
7-4
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parameters for Xe~see Table I! and in the weak~and mono-
chromatic! field limit G;g@V12,V12

(3) ,uDu, an estimate for
z givesz;631010N21 cm, whereN is measured in cm23.
Increasing the detuning, intensity or bandwidth of the fie
will result in larger values ofz.

It is important to mention that the step leading from E
~16! to Eq. ~18! assumes the conditiondk!Re@a#m21, i.e.,
the polarization for the harmonic field is conditioned by t
resonant atomic response. Since in the present treatmen
well as in all works dealing with phase control, the two fiel
propagate collinearly, the buffer gas is absent and the th
fundamental and one harmonic photons are near the ato
transition resonance, this condition is certainly satisfied
there were an additional nonresonant contribution due to
presence of a buffer gas, or noncollinear propagation of
fundamental and harmonic fields, one should then look at
total phase mismatchdk1am21 in Eq. ~16! that includes the
resonant and nonresonant parts, and the ratio of these w
determine the behavior of the system. This has been
cussed in much detail in the paper by Elket al. @19# where it
was clearly established that only the resonant part resul
cancellation that requires the smallness ofdk @14#.

We also stress that the analysis above corresponds
plane wave rather than to a focused Gaussian beam ge
etry. However, since for not-extremely-low atomic densit
(N>1012) the transient regime is very short (z<0.06 cm),
the harmonic field settles to the steady-state value in a
layer of interaction volume where the Gaussian beam ca
well approximated by a plane wave and the result would
the same@19#.

IV. NUMERICAL CALCULATIONS

Here we present and discuss the results of numerical
lution of the equations derived in Sec. II. No rate appro
mation is made. This approach is fairly general and in
range of optical frequencies it is valid for pulse duratio
down to a fraction of a picosecond, i.e., as long as the p
contains several tens of optical cycles. For the numer
simulations for Xe, we use the parameters calculated pr
ously @5# via multichannel quantum defect theory. Those p
rameters, appropriately converted to conform to the pres
definitions, are collected in Table I.

For illustration purposes, it is desirable to have a ma
mally pronounced interference of the fundamental and h
monic fields. To obtain, for example complete cancellation

TABLE I. Atomic parameters used in the calculations.

Parameter Value~in S.I. units!

g 5.03108

v21 1.282631016

m12 4.324310230

m12
(3) 2.544310251

m2c
(2) 9.322310248

s1
a 1.40310240

as2 is set to zero since it is small by comparison and the continu
is smooth in the vicinity ofv212v f .
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u5p when the Rabi frequencies of the two fields enter E
~6! with opposite signs, it is obvious thatV12 and V12

(3)

should overlap completely throughout the interaction tim
Let the fundamental and harmonic fields have Gaussian t
poral profiles

Ej~ t !5E j
maxexpF2

~ t2tmax!
2

t j
2 G , j 5 f ,h,

whereE j
max[Ej (t5tmax) andt j are the peak amplitude an

temporal width of the corresponding field. Then, for t
complete overlapping of the Rabi frequencies throughout
interaction, these parameters should satisfy the relations

E h
max5

m12
(3)

m12
~E f

max!3, th5
t f

A3
. ~20!

The first of these conditions gives the equality of peak val
of both Rabi frequencies, while the second one is respons
for the equality of their widths. The numerical factorA3 is
due to the cubic dependence of the three-photon Rabi
quency on the field amplitude.

As a parameter corresponding to an observable in a
experiment, we define the ionization yield

Q~ t !5@12s11~ t !2s22~ t !#5E
0

t

g ion~ t8!s22~ t8!dt8,

~21!

where the last equality is obtained using Eqs.~6!. If the ion-
ization is measured at a long time after the two pulses
gone, which is what in reality happens, this equation sim
reads as

Q.12s11~ t→`!, ~22!

which is the total probability of ionization produced by th
fields.

A. Single-atom behavior

We consider first the behavior of a single atom interact
with the two fields without taking into account the influen
of the atomic response on the phases and amplitudes of t
fields. This situation corresponds to the interaction of
fields with an optically thin layer of medium atz50.

In Fig. 2 we plot the ion yieldQ, as a function of the
relative phaseu for different intensitiesI f5ce0E f

2/2 of the
fundamental. In all cases, the harmonic-pulse durationth
51 ns and the conditions~20! are satisfied. The detuningD
is taken such that it compensates the relative Stark shif
levels u1& and u2& at the maximumtmax of the pulse:

D52
s12s2

2\
~E f

max!2.

In this figure, for all intensities and the relative phaseu5p,
the ionization vanishes completely since the two Rabi f
quencies interfere destructively and the second term in

m

7-5



d
e
ct
ar

y
II.
ob
is

or
im
o

th

e

l
io
a

n
ks

,
th

lt

n
sily
-
ible
tion

he
nce,
all

ce
itial
d
oth
nce
rgy

cu-

ven

vel

ly.
ith

e
ela-

1

the
ion
e

DAVID PETROSYAN AND P. LAMBROPOULOS PHYSICAL REVIEW A63 043417
right-hand side of Eq.~6a!, responsible for the stimulate
transition from u1& to u2& is equal to zero throughout th
duration of the pulses. Consequently, the medium pra
cally does not interact with the fields and the atoms
‘‘trapped’’ in their ground state u1&. For intensities
I f<331010 W/cm2, with increasing the relative phaseu
from 0 to 2p the ionization profile follows approximatel
the cosu law, which is consistent with the results of Sec. I
For higher intensities of the fundamental, however, we
tain a surprising result; that is, the maximal ionization
observed atuÞ0,2p. This is because for intense and/or sh
pulses the pulsed nature of the fields begins to play an
portant role, and the rate approximation breaks down. N
the terms responsible for the stimulated transition in Eqs.~6!,
and consequently, the populations22 of the upper atomic
level reach maxima not atu50,2p, . . . , as isillustrated in
Fig. 3. It is also important that the ionization is caused by
same pulsed fundamental field that has the maximum
tmax52 ns. Consequently, with variation of the relativ
phase, the shift of the moment of time at whichs22 reaches
maximum with respect totmax is also essential for optima
ionization. Note that due to the increase of the ionizat
with increase of the intensity of the fundamental, the pe
value ofs22 in Fig. 3, for the sameu ’s, is higher in the case
I f5331010 W/cm2 than that forI f5831010 W/cm2. One
can see in Fig. 2, that increasing the intensity results i
narrower dip in the ionization profile and a shift of its pea
toward the values ofu that are closer top. The numerical
simulations also show that, while keeping the conditions~20!
satisfied, with decreasing the pulse durationt f , the ion yield
reduces and its peaks atuÞ0,2p, . . . gradually disappear
which is equivalent to the decreasing of intensity since
total energy of the pulse lessens.

B. Pulse propagation

Let us turn now to the effects of propagation. The resu
presented below are obtained for a density of atomsN

FIG. 2. Ion yield~22! vs relative phaseu for ten different peak
intensities of the fundamental field: for the lowest curveI f

max

5131010 W/cm2, then for every subsequent higher curveI f is
increased by 131010 W/cm2.
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51013cm23. This, however, does not imply any limitatio
on the generality of the discussion since, as one can ea
verify, the parameterzNS, whereS is the beam cross sec
tion, is a propagation constant, and thus it is always poss
to rescale the problem to any desired density and propaga
length z. Meanwhile, for a density of atoms as low as t
above, the nonradiative dephasings of the atomic cohere
i.e., the collisional relaxation, can safely be neglected. In
our simulations, conditions~20! are assumed at the entran
to the medium. As discussed above, in the case of in
phase differenceu(z50,t)5p, the atoms stay in the groun
state and the medium appears to be ‘‘transparent’’ to b
fields; neither the fundamental, nor the harmonic experie
any remarkable distortion of their shapes or total ene
Sj (z)}*dtuEj (z,t)u2, j 5 f ,h, over distances of propagationz
as large as;50 cm. The change of the relative phase ac
mulated over this distance is only;1023p rad, which is due
to the field-independent phase shift of the fundamental, gi
by the two terms~polarizabilities! in parentheses of Eq.~8a!.
Note, however, that since the excitation of the upper le
u2& is canceled (s22;0), only the term proportional to the
polarizability s1 of the ground state contributes.

Consider next the caseu(0,t)50, i.e., at the entrance to
the cell the two Rabi frequencies interfere constructive
The results corresponding to the parameters of Fig. 2 w
I f

max5831010 W/cm2 are collected in Figs. 4 and 5. On
can see in Fig. 4 that in the course of propagation, the r
tive phaseu ~taken at the dynamic pulse maximumt5tmax
1z/c) grows rapidly and over a distance of the order of
cm reaches the valuep at which the initial constructive in-
terference turns to a destructive one. At the same time,
total energy of the harmonic pulse, after a small reduct
over a short interval ofz, begins to increase as a result of th

FIG. 3. Upper-level populations22 as a function of time for~a!
I f

max5331010 W/cm2, and ~b! I f
max5831010 W/cm2. In both

graphs, u50 ~solid curve!, u50.5p ~dot-dashed curve!, u
50.72p ~dashed curve!, andu5p ~dotted curve!.
7-6
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energy transfer from the strong fundamental field, in
parametric conversion process. This small reduction of
harmonic takes place only at the beginning of the propa
tion when the relative phase is still close to zero and
interference is constructive, in the process of excitation
atoms from the ground stateu1& to the stateu2&, while the
generated part of the harmonic field is out of phase with
fundamental approximately byp and continues to build up
with slightly oscillating around the valuep phase. It is im-
portant to mention that throughout the propagation, the a

FIG. 4. Relative phaseu(z,t5tmax1z/c) ~a!, normalized energy
Sh(z)/Sh(0) of the harmonic field~b!, and ion yieldQ(z) ~c! vs
propagation lengthz for the caseI f

max5831010 W/cm2.

FIG. 5. Temporal profile of amplitudeEh of the harmonic field
at differentz. All parameters are as in Fig. 4.
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plitude and the phase of the fundamental field practically
not change. This is because the number of photons conta
in that pulse exceeds by many (>6) orders of magnitude the
number of atoms the pulse interacts with over the distanc
z<20 cm. Comparing the three graphs of Fig. 4, one can
that with risingu andSh , the ionization probability first also
grows, which is consistent with the previous discussion
lated to that intensity of the fundamental field. But asu ap-
proachesp, the ion yield drops almost exponentially unt
Q.10%. This residual ionization that is present even au
.p ~and tends to 0 rather slowly! is caused by the fact that
because of the significant increase of the total energy of
harmonic field, the conditions~20! are not completely satis
fied and the upper atomic levelu2& acquires population due
to that fraction of the generated field which exceeds the
tial. Since the temporal widths of the pulses are less than
~radiative! relaxation timeg21 of the polarizationPh}s21,
a significant fraction of the harmonic-pulse amplitude is ge
erated behind the fundamental, as is seen in Fig. 5. In
figure, the frequency of rapid oscillations in the tail of th
harmonic field corresponds to the~unperturbed! detuningD,
since the fundamental pulse, that is responsible for the
Stark shift of the atomic levels, is already gone. That part
the amplitude is then attenuated due to the atomic relaxat
therefore the total energy of the harmonic, after pass
through a maximum atz;5 –7 cm, decays slowly back
Under these conditions, the leading part of the harmo
pulse that falls under the temporal shape of the fundame
is by u.p out of phase with the latter and therefore t
ionization vanishes, while the generated tail is continuou
scattered by the atoms in the process of radiative decay.
oscillations of the relative phase aroundp are also slowly
damped and the propagation reaches a ‘‘dynamic equ
rium.’’

A similar behavior of the system is obtained for a range
intensities we have explored. As can be seen in Fig. 6,
main difference is that for weaker fields the ion yield dro
to zero much faster asz increases and for I f

max

<331010 W/cm2 it does not exhibit a maximum other tha
at z50, which is consistent with the discussion in Sec. IV

We have also tested the case in which the harmonic fi
amplitude is zero at the entrance to the medium. As one
easily deduce from the results of this paper and has also b
discussed in earlier work@19#, the harmonic field is then
generated in the medium in such a way as to cancel
excitation of levelu2& and, consequently, the ionization th
was due to the fundamental field alone at the beginning
propagation. We should note here that in@19# the analysis of
the system was carried out only for the case in which the
approximation is valid, and the question of what would ha
pen to cancellation if rate approximation broke down w
posed. Our present work establishes that the basic resul
Ref. @19# remain valid under more general circumstances
short-pulse radiation, when the rate approximation is in
equate and one has to perform both time and space inte
tion of the equations for the fields as well as for the atom
variables.
7-7
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V. CONCLUSIONS

We have shown theoretically that in an optically den
medium the propagation of a bichromatic electromagn
field consisting of a fundamental and its third harmonic, w
a preselected initial relative phase, has a profound eff

FIG. 6. Ion yieldQ(z) vs propagation lengthz for three differ-
ent intensities of the fundamental:~a! I f

max5131010 W/cm2, ~b!
I f

max5331010 W/cm2, and~c! I f
max5631010 W/cm2.
et
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Over a rather short scaled propagation distance, and inde
dently of its initial value, the relative phase between the t
components of the field settles to a value that makes
medium transparent to the radiation, thus precluding furt
excitation and consequently control. The scaled dista
zNS does of course involve the density of the species a
the cross-section of the laser beam, which suggests s
flexibility on the choice of these parameters. In any ca
however, the actual length of the interaction region ov
which control can be active will be defined and limited b
the combination of the above parameters, as well as by
geometry of the focused or unfocused laser beam.

The reader familiar with the effect of electromagnetica
induced transparency~EIT! @20# might notice some similari-
ties between the effects of propagation discussed in
present paper and those in the case of EIT. Although b
effects are established in a coherent way and result in
transparency of the medium to two electromagnetic fiel
the underlying physics is fundamentally different. The e
sence of EIT is a phenomenon of coherent population tr
ping resulting from the application of two laser fields to
three-level atomic system that creates a specific coheren
perposition of the atomic states—the so-called ‘‘da
state’’—that is stable against absorption of both fields.
that case, the two fields are not significantly altered by
medium and their relative phase is not important, while
the present work there is no specific stable superposition
the states since only two atomic levels are involved and i
the atomic response that modifies the relative phase of
fields in a way that the excitations from the ground level d
to each field separately exactly cancel each other.
.
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