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Abstract
We present a self-consistent theory and analytical results for the three-photon–
one-photon coherent control of ionization in an optically dense autoionizing
medium. We show that for an optically thick medium, over a short scaled
propagation distance, the phase and amplitude of the harmonic field settle to
values that are fully determined by the atomic and fundamental field parameters
and are completely independent of the initial relative phase between the two
fields, thus preventing efficient phase control of the autoionization and its
products. Control of the autoionization and the branching ratio of its products is
still feasible, however, through the variation of the detuning of the fundamental
field from the atomic transition resonance.

1. Introduction

In recent work [1], we have addressed the issue of the effect of propagation on the control
of photoabsorption through external control of the relative phase between a pump field and
its third harmonic. We did so, in the simplest system employed in relevant theoretical as
well as experimental studies [2–5], namely the excitation of a bound–bound transition by the
superposition of the above-mentioned combination of fields. We found that the effects of
propagation are indeed significant, as the relative phase, after a rather short scaled distance
of propagation, settles to a value that cancels any transition by the combination of the two
fields. The issue is of course important from the point of view of possible applications of such
schemes to the control of photobreakup products on a large scale.

However, photobreakup products will at some stage involve transitions into a continuum
and preferably to discrete states embedded in continua, as in autoionization [6,7]. In fact, some
of the experimental investigations of these schemes have involved autoionizing states [8]. As in
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the case of bound–bound transitions, the processes are fairly well understood at the single-atom
(molecule) level, even in the presence of autoionization [8–10]. The effect of propagation,
however, remains an open question in that context. One might expect similarities with the
corresponding behaviour in bound–bound transitions, but continua are different, and more
so when autoionization is involved. We have thus undertaken the task of investigating the
effect of propagation on coherent control through the phase of the fields, in the context of
autoionization. Anticipating the discussion and results in the sections that follow, we find that
again the effects are significant essentially to the same degree.

In section 2 we set up and discuss the issue in the context of one discrete state embedded
in a single continuum, so that we can establish the basic propagation behaviour in such a
system. However, control of photobreakup products must involve, at least, two continua. This
case, formally more complex but necessary, is taken up in section 3. In both cases, we are
able to produce analytical results, although those in section 3 result in rather complicated, but
nevertheless, useful expressions. Our conclusions are summarized in section 4.

2. Autoionizing state coupled to a single continuum

2.1. System description

Consider the stationary propagation of a bichromatic electromagnetic field E through an
optically dense medium. This field is a function of time t and space coordinate z and
is composed of the fundamental and its third harmonic modes that have the same (linear)
polarization and angular frequencies ωf and ωh = 3ωf , respectively. It can be expressed as

E(z, t) = 1
2

[
Ef ei(kf z−ωf t) + Ehei(khz−ωht) + c.c.

]
(2.1)

where Ej = |Ej |e−iφj , j = f, h, is the complex amplitude of the corresponding field which is
slowly varying in time and space, and kj = ωjnjc

−1, with nj the refractive index at frequency
ωj , which accounts for the contribution of the host medium (if any) as well as all non-resonant
polarization effects of the active medium itself. The relative phase θ between the two fields
is given by θ(z) = (φh − 3φf ) − δkz, where δk = kh − 3kf is the phase mismatch over a
unit distance of propagation. At the entrance to the medium (z = 0), the relative phase has
a definite value which can be controlled externally, while its evolution during the course of
the propagation of the fields inside the medium is fully determined by the medium response
described by the polarization

P(z, t) = 1
2

[
Pf ei(kf z−ωf t) + Phei(khz−ωht) + c.c.

]
(2.2)

where Pf,h is the field-induced polarization at the corresponding frequency which is slowly
varying in time and space.

The medium is represented by a vapour of atoms (or molecules) that involve a ground state
|1〉 and a discrete state |2〉 with opposite parity (figure 1). The excitation of |2〉 is accomplished
by the simultaneous action of the fundamental and harmonic fields through the near-resonant
three- and one-photon transitions from the ground state, respectively. The discrete state is
embedded into a single continuum |c〉 and coupled to it via configuration interaction V which
causes the autoionization. Using the standard procedure, whose detailed description can be
found, for example, in [9], we obtain the following set of equations for the three main elements
σnk ≡ 〈n| σ |k〉, n, k = 1, 2, of the atomic density matrix σ transformed to the frame rotating
at (ωht − khz):

∂tσ11 = −γ σ11 − 2 Im

{[
M12

(
1 − i

q

)
E∗

h + M
(3)
12

(
1 − i

q(3)

)
E∗3

f eiδkz

]
σ21

}
(2.3)
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Figure 1. Energy levels of an atom interacting with two electromagnetic fields. The autoionizing
state |2〉 decays into the single continuum |c〉.

∂tσ22 = −�σ22 + 2 Im

{[
M12

(
1 +

i

q

)
E∗

h + M
(3)
12

(
1 +

i

q(3)

)
E∗3

f eiδkz

]
σ21

}
(2.4)

[
∂t + i�̃ + 1

2 (γ + �)
]
σ21 = i

[
M21

(
1 − i

q

)
Eh + M

(3)
21

(
1 − i

q(3)

)
E3

f e−iδkz

]
σ11

−i

[
M21

(
1 +

i

q

)
Eh + M

(3)
21

(
1 +

i

q(3)

)
E3

f e−iδkz

]
σ22 (2.5)

where M12 and M
(3)
12 are the one- and three-photon transition matrix elements between the

ground state and the autoionizing state modified by an admixture of states of the continuum [6];
q and q(3) are the corresponding asymmetry (Fano) parameters; γ is the ionization width of the
ground state |1〉 directly into the continuum, and � is the autoionization width of state |2〉; �̃
is the detuning of both fields from resonance with the atomic transition |1〉 → |2〉, modified
by the AC Stark shift. (Detailed definition of these quantities is given in the appendix.) In
a similar manner, the ionization rate R into the continuum |c〉 can be calculated through the
integration of ∂tσcc, where σcc ≡ 〈c| σ |c〉, over the continuum states, with the result

R =
∫

∂tσcc dc = γ σ11 + �σ22 − 2 Im
{
2i
[
mE∗

h + m(3)E∗3
f eiδkz

]
σ21
}

(2.6)

where m = M12/q and m(3) = M
(3)
12 /q(3) are the effective one- and three-photon matrix

elements of the indirect transition |1〉 → |c〉 → |2〉 from the ground state to the autoionizing
state via the continuum (see the appendix). Using equations (2.3) and (2.4), it is easy to verify
that R = −(∂tσ11 + ∂tσ22), as it should.

Let us turn now to the equations describing the evolution of the field. In the following,
the depletion of the fundamental field will be neglected since it is assumed to be significantly
strong to sustain the three-photon transition amplitude so that it has appreciable magnitude
which is comparable to the single-photon one. The polarization of the medium at the frequency
of the harmonic field is given by the equation

Ph = 2N

(
µ12σ21 +

∫
µ1cσc1 dc

)
(2.7)
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where N is the density of atoms and µ1n ≡ 〈1| e
r |n〉, n = 2, c, is the matrix element of the
electric dipole operator e
r . From (2.7), after adiabatic elimination of σc1, we obtain

Ph = 4Nh̄

[
M12

(
1 − i

q

)
σ21 + i

m

�̄

(
mEh + m(3)E3

f e−iδkz
)
σ11 +

(
s(1)Eh + s(13)E3

f e−iδkz
)
σ11

]
(2.8)

where �̄ ≡ �/2 is the autoionization half-width. Finally, the stationary propagation of the
harmonic field is governed by the reduced wave equation

∂zEh = i
ωh

2cε0nh

Ph (2.9)

which, together with the polarization (2.8) and the density matrix equations (2.3)–(2.5), provide
a complete self-consistent description of the system.

2.2. Analytic solution

To present analytical results on the behaviour of the system, we make the rate approximation
which is valid in the weak-field limit, when the configuration interaction is stronger than the
fundamental and harmonic field induced dipole interactions

� � γ (1), γ (3), $h,$
(3)
f (2.10)

where γ (1) and γ (3) are, respectively, the single- and three-photon direct ionization widths
from |1〉 to |c〉 (see the appendix), and $h = M12|Eh| and $

(3)
f = M

(3)
12 |Ef |3 are the

Rabi frequencies of the corresponding fields. To estimate the range of intensities for which
the rate approximation approach is adequate, consider a typical atomic system, e.g. Ca,
involving ground state |1〉 ≡ |4s2(1S0)〉, autoionizing state |2〉 ≡ |3d5p(1P1)〉 and continuum
|c〉 ≡ |4sεp〉. The three-photon transition matrix element of Ca is highly enhanced due to the
|4s5s(1S0)〉 state which is near-resonant with the two-photon transition from the ground state.
The following atomic parameters are relevant here: � 
 1.2 × 1014 s−1, γ (1) 
 3.5 Ih s−1,
γ (3) 
 4.4×10−21 I 3

f s−1, $h 
 4.5×107 I
1/2
h s−1 and $

(3)
f 
 2.7×10−4 I

3/2
f s−1, where the

intensities of the harmonic and fundamental fields, Ih and If , are in units of W cm−2 [11]. The
comparison of these numbers with (2.10) gives a restriction on the intensity of the fundamental:
If � 3 × 1011 W cm−2. Taking, for safety, 108 � If � 1010 W cm−2, and requiring that
$h ∼ $

(3)
f which leads to Ih ∼ 4 × 10−23 I 3

f , we obtain that 40 � Ih � 4 × 107 W cm−2.
It is important to mention that in the case of pulsed fields, condition (2.10) should be

supplemented by yet another condition which implies that the rate of change of the field
amplitude (Rabi frequency) is smaller than the autoionization width �. However, taking into
account the value of � listed above, one can see that for optical fields this condition is almost
always satisfied unless femtosecond pulses are used. We note that the pulsed nature of the
fields can influence the system dynamics through the time-dependent Stark shift [1]. This
effect is, however, unimportant in the weak-field limit when the width of the atomic resonance
dominates over the AC Stark shift.

In the rate approximation, the equations for the ionization rate as well as for the evolution
of the harmonic field are found by assuming that σ11 ∼ 1 � σ22 and ∂tσ21 = ∂tσ22 = 0, which
leads to

σ21 
 1

�̃ − i�̄

[
M21

(
1 − i

q

)
Eh + M

(3)
21

(
1 − i

q(3)

)
E3

f e−iδkz

]
(2.11)

σ22 
 1

�̄
Im

{[
M12

(
1 +

i

q

)
E∗

h + M
(3)
12

(
1 +

i

q(3)

)
E∗3

f eiδkz

]
σ21

}
. (2.12)
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Substituting this into (2.6) and (2.8), after some algebra, we obtain

R = −∂tσ11 = 2

�̄(ε2 + 1)

∣∣m(ε − q)Eh + m(3)(ε − q(3))E3
f e−iδkz

∣∣2 (2.13)

Ph = i
4Nh̄m

�̄(ε − i)

[
m
(
ε − 2q − iq2

)
Eh + m(3)

(
ε − q(3) − q − iqq(3)

)
E3

f e−iδkz
]

(2.14)

where ε = �̃/�̄ is the detuning normalized by the autoionization halfwidth. In (2.14),
we have, for simplicity, dropped the terms proportional to the polarizabilities s(1) and s(13)

and responsible for the phase shift of the harmonic field, assuming that their contribution is
incorporated in δk. Now equation (2.9) can be solved analytically with the result

Eh(z) = Eh(0) eiαhz +
αf

δk + αh

E3
f (e

iαhz − e−iδkz) (2.15)

where

αh = a
(εq2 − ε + 2q) + i(ε − q)2

ε2 + 1

αf = a(3) (εqq
(3) − ε + q + q(3)) + i(ε − q)(ε − q(3))

ε2 + 1
and

a = 2Nh̄ωhM
2
12

cε0nh�̄q2
a(3) = a

q

M21

M
(3)
21

q(3)
.

One could think of αh as a complex absorption coefficient.

(a) Consider first the trivial case Ef = 0, i.e. only the harmonic field is present. Then

Eh(z) = Eh(0) eiαhz (2.16)

or

|Eh(z)| = |Eh(0)| exp

[
−a

(ε − q)2

ε2 + 1
z

]
(2.17)

φh(z) = φh(0) − a
εq2 − ε + 2q

ε2 + 1
z (2.18)

that is, as z increases, the real amplitude of the harmonic field decays according to the
exponential Beer’s law, while its phase experiences a shift. Meanwhile, the ionization rate
is given by the familiar single-field formula [6, 7]

R(z) = 2m2

�̄

(ε − q)2

(ε2 + 1)
|Eh(z)|2 = γ (1)(z)

(ε − q)2

(ε2 + 1)
(2.19)

where

γ (1)(z) = γ (1)(0) exp

[
−2a

(ε − q)2

ε2 + 1
z

]
.

At ε = q, the ionization vanishes and, consequently, the field amplitude remains
unchanged during the course of the propagation, while the phase shift is given by
φh(z) = φh(0) − aqz.
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(b) The other special case which needs to be considered separately, is when ε = q butEf �= 0.
Then αh = aq and αf = a(3)q(3) are both purely real and, as is apparent from equation
(2.13), the harmonic field does not contribute to the ionization

R = 2m(3)2

�̄

(q − q(3))2

(q2 + 1)
|Ef |6 = γ (3) (q − q(3))2

(q2 + 1)
(2.20)

while its evolution is given by

Eh(z) 
 Eh(0) eiaqz +
M

(3)
21

M21
E3

f (e
iaqz − 1). (2.21)

(c) Finally, let us examine the general situation ε �= q and Ef �= 0. For the distances of
propagation

z � 1

Im[αh]
= ε2 + 1

a(ε − q)2
= ζ (2.22)

the terms proportional to the exponent eiαhz in (2.15) are totally damped away and we are
left with a simple expression,

Eh(z) 
 − q

M21

M
(3)
21

q(3)

ε − q(3) − q − iqq(3)

ε − 2q − iq2
E3

f e−iδkz. (2.23)

Substituting this into (2.13), after some algebra, we obtain

R = 2m(3)2

�̄

q2(q − q(3))2

(ε − 2q)2 + q4
|Ef |6 = γ (3) q2(q − q(3))2

(ε − 2q)2 + q4
. (2.24)

Thus, the ionization rate is expressed through the atomic parameters, detuning ε and the
cube of the intensity of the fundamental field, whereas it does not contain in any way
the relative phase between the two fields, since, independently of the initial amplitude
and phase, over a distance of propagation of several ζ , the harmonic field acquires the
amplitude given by (2.23). With the parameters for Ca listed above, an estimate for ζ

at resonance ε ∼ 0 gives ζ ∼ 3 × 1016N−1 cm, where N is measured in cm−3. For
an atom with a narrower autoionizing state, ζ would be smaller. In figure 2 we plot the
Rabi frequency of the harmonic field $h and the ionization rate R as a function of ε

for several different values of the asymmetry parameters q and q(3). The dependence of
the ionization rate on the detuning is given by the Lorentzian (2.24) with the maximum
Rmax = γ (3)(1 − q(3)/q)2 at ε = 2q. In the case of q = 0, both the harmonic field
amplitude and the ionization rate vanish for all ε �= 0. At ε = 0 we have $h = $

(3)
f /2,

θ = π , and R = γ (3)q(3)2/4. The more interesting situation, however, is realized when
either the detuning is very large, ε � q, q(3), or the two asymmetry parameters are equal
q = q(3). Then the ionization vanishes, R = 0, while the harmonic field amplitude and
phase settle to the values

$h = $
(3)
f θ = π (2.25)

for all ε. Thus, in this limiting case the autoionizing resonance behaves completely
analogously to the bound–bound resonance [1]. An apparent curiosity worth noting is
that, if we formally set ε = q (which was excluded at the beginning of this paragraph
since it would mean that Im[αh] = 0), equation (2.24) turns into equation (2.20) which is
a rather unexpected result, since in that case equation (2.23) is invalid. This is, however,
a consequence of the form of equation (2.13), which eliminates the contribution of Eh

when ε = q.
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Figure 2. (a) Rabi frequency of the harmonic field $h (normalized by $
(3)
f ) and (b) ionization

rate R (normalized by γ (3)) versus detuning ε for q = q(3) = 1 (curve 1); q = 1, q(3) = 2 (curve
2); q = 1, q(3) = 3 (curve 3); q = 2, q(3) = 1 (curve 4); q = 3, q(3) = 1 (curve 5).

3. Two continua coupled to the autoionizing state

3.1. System description

In this section, we consider the more general situation when the autoionizing state |2〉 is
embedded into two different continua |c1〉 and |c2〉 (figure 3). Now, the equations for the
density matrix elements can be expressed as

∂tσ11 = −
∑
l

γlσ11 − 2 Im

{[
M12

(
1 − i

q

)
E∗

h + M
(3)
12

(
1 − i

q(3)

)
E∗3

f eiδkz

]
σ21

}
(3.1)

∂tσ22 = −
∑
l

�lσ22 + 2 Im

{[
M12

(
1 +

i

q

)
E∗

h + M
(3)
12

(
1 +

i

q(3)

)
E∗3

f eiδkz

]
σ21

}
(3.2)

[
∂t + i�̃ +

1

2

∑
l

(γl + �l)

]
σ21 = i

[
M21

(
1 − i

q

)
Eh + M

(3)
21

(
1 − i

q(3)

)
E3

f e−iδkz

]
σ11

−i

[
M21

(
1 +

i

q

)
Eh + M

(3)
21

(
1 +

i

q(3)

)
E3

f e−iδkz

]
σ22 (3.3)
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Figure 3. Autoionizing state |2〉 decays into two different continua |c1〉 and |c2〉.

where γl is the ionization width of ground state |1〉 directly into continuum |cl〉, l = 1, 2, and
�l is the partial autoionization width of |2〉 into |cl〉. Similarly to (2.6), the rate of ionization
Rl into continuum |cl〉 is given by

Rl =
∫

∂tσclcl dcl = γlσ11 + �lσ22 − 2 Im
{

2i
[
mlE

∗
h + m

(3)
l E∗3

f eiδkz
]
σ21

}
(3.4)

from where it follows that the total ionization rate R ≡ ∑
l Rl = −(∂tσ11 + ∂tσ22). Finally,

the polarization Ph for the harmonic field is given by the equation

Ph = 4Nh̄

[
M12

(
1 − i

q

)
σ21 + i

∑
l

2ml

�l

(
mlEh + m

(3)
l E3

f e−iδkz
)
σ11

+
∑
l

(
s
(1)
l Eh + s

(13)
l E3

f e−iδkz
)
σ11

]
. (3.5)

Thus, the formalism of this section is a generalization of that of the previous section to
the system with multiple continua. Consequently, all of the results of section 2 can be derived
from the solution presented below in the special case of a single continuum.

3.2. Analytic solution

The validity of the rate approximation for the present situation again is based on the weak-field
limit condition

�̄ ≡ 1
2

∑
l

�l � γ
(1)
l , γ

(3)
l , $h,$

(3)
f (3.6)

where γ
(1)
l and γ

(3)
l are, respectively, the single- and three-photon direct ionization widths from

|1〉 to |cl〉, l = 1, 2 (see the appendix). Following the same procedure as in the derivation of
equations (2.13) and (2.14), for the rate of ionization into continuum |cl〉 and polarization Ph,
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we obtain

Rl = 2

�̄(ε2 + 1)

∣∣∣∣∣
√

2�̄

�l

(
mlEh + m

(3)
l E3

f e−iδkz
)
(ε + i)

−
√

�l

2�̄

[
M21

(
1 +

i

q

)
Eh + M

(3)
21

(
1 +

i

q(3)

)
E3

f e−iδkz

]∣∣∣∣∣
2

(3.7)

Ph = i
4Nh̄M12

�̄(ε − i)q

{
M21

q

[
ε(1 + g2) − 2q − i(q2 + g2)

]
Eh

+
M

(3)
21

q(3)

[
ε(1 + gg(3)) − q(3) − q − i(qq(3) + gg(3))

]
E3

f e−iδkz

}
(3.8)

where g and g(3) are the one- and three-photon correlation coefficients which are derived in the
appendix. As in the single continuum case, we have dropped in (3.8) the terms proportional
to the polarizabilities s

(1)
l and s

(13)
l which are assumed to be effectively incorporated in δk.

Equation (3.8) is now used to solve equation (2.9) analytically, which yields formally the same
result as (2.15) where the coefficients αh and αf are, however, slightly different

αh = a
(εq2 − ε + 2q) + i[(ε − q)2 + g2(ε2 + 1)]

ε2 + 1

αf = a(3) (εqq
(3) − ε + q + q(3)) + i[(ε − q)(ε − q(3)) + gg(3)(ε2 + 1)]

ε2 + 1
.

(a) Consider again the case Ef = 0, when the harmonic field propagates alone in the medium.
Then we have

|Eh(z)| = |Eh(0)| exp

{
−a

[
(ε − q)2

ε2 + 1
+ g2

]
z

}
(3.9)

φh(z) = φh(0) − a
εq2 − ε + 2q

ε2 + 1
z (3.10)

that is, the phase shift is given by the same formula as in the single continuum case.
Also the real amplitude of the field decays according to Beer’s law with, however, a
different absorption coefficient which now contains an additional (detuning-independent)
correlation term g2. The presence of such a term in the multiple continua case is essential
since it leads to the conclusion that the absorption does not vanish for any detuning ε.
Only if g = 0, that is µ1c1/Vc12 = µ1c2/Vc22 (see the appendix), which need not be the
case for an arbitrary atom, the absorption vanishes at ε = q, as in the single-continuum
case. This can also be seen from the equations for the ionization rate showing that the
ionization is present at any detuning ε unless g = 0:

Rl(z) = 2

�̄(ε2 + 1)

[(
εml − M12

�l

2�̄

)2 2�̄

�l

+ g2 M
2
12

q2

�l′

2�̄

]
|Eh(z)|2

= γ̄ (1)(z)

(ε2 + 1)

[
q2

(
ε

ml

M12
− �l

2�̄

)2 2�̄

�l

+ g2 �l′

2�̄

]
(3.11)

R(z) = R1 + R2 = 2M2
12

�̄q2

[
(ε − q)2

(ε2 + 1)
+ g2

]
|Eh(z)|2 = γ̄ (1)(z)

[
(ε − q)2

(ε2 + 1)
+ g2

]
(3.12)
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where l, l′ = 1, 2, l �= l′, and

γ̄ (1) = 2(m1 + m2)
2

�̄
|Eh|2 = 2$2

h

�̄q2

is the single-photon direct ionization width of the ground state |1〉 weighted by the
configuration interaction (obviously γ̄ (1) = γ (1) in the single continuum case). Thus, the
correlation term g2, being essentially detuning-independent, contributes to an additional
background in the ionization spectrum of an atom with multiple continua. In the case of
g = 0, equation (3.12) eventually turns into equation (2.19) with vanishing ionization at
ε = q. The branching ratio of the two products of ionization

B = R1

R2
= �2

�1

q2(2εm1�̄ − M12�1)
2 + g2M2

12�2�1

q2(2εm2�̄ − M12�2)2 + g2M2
12�1�2

(3.13)

is constant throughout the propagation distance z since it does not contain the harmonic
field intensity and depends only on the atomic parameters and detuning ε, through which
it can be controlled.

(b) Finally, we consider the general situation when both fields are present (Eh �= 0, Ef �= 0).
Similarly to the single continuum case, for the distances of propagation

z � 1

Im[αh]
= ε2 + 1

a[(ε − q)2 + g2(ε2 + 1)]
= ζ (3.14)

the terms with eiαhz in (2.15) are totally damped away and we obtain

Eh(z) 
 − q

M21

M
(3)
21

q(3)

ε(1 + gg(3)) − q(3) − q − i(qq(3) + gg(3))

ε(1 + g2) − 2q − i(q2 + g2)
E3

f e−iδkz. (3.15)

Note that due to the presence of g2 in the denominator of condition (3.14), the case ε = q

need not be considered separately. Substituting (3.15) into (3.7), for the partial ionization
rate Rl we obtain a rather cumbersome nevertheless illustrative result:

Rl = γ̄ (3)

(ε2 + 1)(X2 + S2)

{(
Y 2
l

2�̄

�l

+ g2 �l′

2�̄

)(
X(3)2 + S(3)2

)

+

(
Y

(3)2
l

2�̄

�l

+ g(3)2 �l′

2�̄

)(
X2 + S2

)

−2

[(
YlY

(3)
l

2�̄

�l

+ gg(3) �l′

2�̄

)(
XX(3) + SS(3)

)

+(−1)l
′

√
�l′

�l

(
g(3)Yl − gY

(3)
l

)(
X(3)S − XS(3)

)]}
(3.16)

where l, l′ = 1, 2, l �= l′,

γ̄ (3) = 2(m(3)
1 + m

(3)
2 )2

�̄
|Ef |6 = 2$(3)2

f

�̄q(3)2
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Figure 4. (a) Partial ionization rates R1 and R2 (normalized by γ̄ (3)) and branching ratio
B = R1/R2 versus detuning ε. For (a)–(c), q = 1, q(3) = 2, g = 1, g(3) = 3; �1/�2 = 0.5
(full curves), �1/�2 = 2 (broken curves), �1/�2 = 5 (dotted curves). For (d)–(f), q(3) = 1,
g = 2, g(3) = 1; q = 2, �1/�2 = 0.5 (full curves), q = 2, �1/�2 = 5 (broken curves), q = 3,
�1/�2 = 0.5 (dotted curves). For (g)–(i), g = 1, �1/�2 = 0.5; q = 1, q(3) = 3, g(3) = 1 (full
curves), q = 2, q(3) = 1, g(3) = 2 (broken curves), q = 3, q(3) = 1, g(3) = 2 (dotted curves).

is the three-photon direct ionization width of the ground state |1〉 weighted by the
configuration interaction (obviously γ̄ (3) = γ (3) in the single continuum case), and

X = ε(1 + g2) − 2q X(3) = ε(1 + gg(3)) − q − q(3)

Yl = q

(
ε

ml

M12
− �l

2�̄

)
Y

(3)
l = q(3)

(
ε
m

(3)
l

M
(3)
12

− �l

2�̄

)

S = q2 + g2 S(3) = qq(3) + gg(3).

The branching ratio B = R1/R2, which we plot in figure 4 for several different values of
the parameters q, q(3), g, g(3) and �1/�2 (or, equivalently, q, q(3), m1/m2, m(3)

1 /m
(3)
2 and

�1/�2), again does not depend on the harmonic field intensity and the relative phase of
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Figure 5. (a) Rabi frequency of the harmonic field $h (normalized by $
(3)
f ) and (b) ionization

rate R (normalized by γ̄ (3)) versus detuning ε for q = q(3) = 1, g = g(3) = 2 (curve 1); q = 1,
q(3) = 2, g = g(3) = 1 (curve 2); q = 1, q(3) = 2, g = 1, g(3) = 3 (curve 3); q = 1, q(3) = 2,
g = 2, g(3) = 1 (curve 4); q = 2, q(3) = 1, g = 1, g(3) = 2 (curve 5); q = 3, q(3) = 1, g = 1,
g(3) = 2 (curve 6).

the two fields. The equation for the total ionization rate has a more compact form

R = γ̄ (3)[
ε(1 + g2) − 2q

]2
+
[
q2 + g2

]2

{
q2(q − q(3))2 + q2(g(3)q − gq(3))2

+g2
[
ε(g − g(3)) + (g(3)q − gq(3))

]2

+
[
(ε − q)(g − g(3)) + (g(3)q − gq(3))

]2
}

(3.17)

and, as in the single continuum case, R is expressed through the atomic parameters,
detuning ε and the cube of the intensity of the fundamental field. In figure 5 we plot
the Rabi frequency of the harmonic field $h and the ionization rate R as a function of
ε for several different values of the parameters q, q(3), g and g(3). Now the situation is
analogous to bound–bound resonance [1], when R = 0, $h = $

(3)
f and θ = π , is realized

only if q = q(3) and g = g(3). It is easy to verify that if the correlation coefficients g and
g(3) are set to zero, only the first term in curly braces of (3.17) survives which leads to
(2.24).
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4. Conclusions

To summarize, we have presented a detailed theoretical investigation of the propagation of
pump fundamental and its third harmonic fields through an optically dense autoionizing
medium. Two cases of atomic systems were considered. In the first case, the single autoionizing
state is embedded in a single continuum, while the second system involves two different
continua. At the entrance to the medium, the two fields have a preselected relative phase,
which, as was shown by the previous works, allows for an efficient phase control of the
photoionization and the branching ratio of its products of a single atom (molecule). We have
found, however, that the situation changes dramatically if the propagation effects are properly
taken into account, since over a short scaled propagation distance, the phase and amplitude of
the harmonic field settle to values that are determined only by the atomic and fundamental field
parameters and are completely independent of the initial relative phase between the two fields,
thus preventing the large-scale efficient phase control of the autoionization and its products.
The parameters of the fundamental, through which the control of photoabsorption is still
achievable, are the intensity and, most notably, the detuning from the autoionizing resonance.
It is worth stressing here the presence of the correlation coefficients in the multiple continua
case, which effectively contribute to an additional detuning-independent background in the
ionization spectrum of an atom. We have shown that the expressions for the field evolution
and for the rate of ionization obtained for the multiple continua case turn into the corresponding
expressions for the single continuum case, if the correlation coefficients are set to zero.

Finally, we would like to note that since the output harmonic field is determined only by
the atomic and fundamental field parameters (figures 2(a) and 5(a)), the results of this paper
can also be treated from the point of view of third harmonic generation in autoionizing media.
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Appendix

Here we define the atomic parameters used in the main text. These definitions correspond to
the general case of an atom with multiple continua |cl〉, l = 1, 2, . . . (figure 3). The same
parameters for the atom with single continuum |c〉 (figure 1) are simply obtained by dropping
everywhere the subscript l and summation

∑
.

One- and three-photon transition matrix elements between the ground state |1〉 and
autoionizing state |2〉:

M12 = µ12

2h̄
−
∑
l

P
∫

dcl
ωcl1 − ωh

µ1clVcl2

2h̄2 (A.1)

M
(3)
12 = µ

(3)
12

2h̄
−
∑
l

P
∫

dcl
ωcl1 − ωh

µ
(3)
1cl

Vcl2

2h̄2 (A.2)

where P denotes the principal value part of the integral.
One- and three-photon asymmetry parameters:

q = M12∑
l ml

ml = π
µ1clVcl2

2h̄2 (A.3)
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q(3) = M
(3)
12∑

l m
(3)
l

m
(3)
l = π

µ
(3)
1cl

Vcl2

2h̄2 . (A.4)

Ionization width of ground state |1〉 directly into the continuum |cl〉:

γl = 2π

∣∣∣∣∣µ1cl

2h̄
E∗

h +
µ

(3)
1cl

2h̄
E∗3

f eiδkz

∣∣∣∣∣
2

. (A.5)

Alternatively, the ionization γl from the ground state can be written as a sum of ionizations
due to each field separately and an interference term:

γl = γ
(1)
l + γ

(3)
l + 2 cos θ

√
γ

(1)
l γ

(3)
l (A.6)

where the expressions for γ (1)
l and γ

(3)
l are easily obtained from the comparison of (A.5) and

(A.6):

γ
(1)
l = π

|µ1cl |2
2h̄2 |Eh|2 γ

(3)
l = π

|µ(3)
1cl

|2
2h̄2 |Ef |6.

Autoionization width of state |2〉 into continuum |cl〉:

�l = 2π
|V2cl |2
h̄2 . (A.7)

Detuning of both fields from the (modified) atomic transition resonance:

�̃ = � +
∑
l

(sl − Sl) (A.8)

where

sl = P
∫

dcl
ωcl1 − ωh

∣∣∣∣∣µ1cl

2h̄
E∗

h +
µ

(3)
1cl

2h̄
E∗3

f eiδkz

∣∣∣∣∣
2

(A.9)

Sl = P
∫

dcl
ωcl1 − ωh

∣∣∣∣V2cl

h̄

∣∣∣∣
2

(A.10)

are the AC Stark shifts of the states |1〉 and |2〉, respectively, due to the interaction with
continuum |cl〉. Alternatively, the AC Stark shift sl of the ground state can be written as a sum
of the Stark shifts due to each field separately and a cross term:

sl = s
(1)
l |Eh|2 + s

(3)
l |Ef |6 + 2 cos θ s

(13)
l |Eh||Ef |3 (A.11)

where the coefficients s
(1)
l , s

(3)
l and s

(13)
l (polarizabilities) are easily obtained from the

comparison of (A.9) and (A.11).
Correlation coefficients for an atom with two continua:

g = µ1c1Vc22 − µ1c2Vc12

µ1c1Vc12 + µ1c2Vc22
= π

2h̄2

µ1c1Vc22 − µ1c2Vc12

m1 + m2
(A.12)

g(3) = µ
(3)
1c1

Vc22 − µ
(3)
1c2

Vc12

µ
(3)
1c1

Vc12 + µ
(3)
1c2

Vc22

= π

2h̄2

µ
(3)
1c1

Vc22 − µ
(3)
1c2

Vc12

m
(3)
1 + m

(3)
2

. (A.13)

Obviously, in the case of a single continuum, these coefficients vanish: g = g(3) = 0.
In the above definitions, µ1n and µ

(3)
1n are the one- and three-photon dipole matrix elements

for the harmonic and fundamental fields, respectively, on transition |1〉 → |n〉, n = 2, cl ;
V2cl ≡ 〈2|V |cl〉 is the configuration-interaction matrix element; ωn1 is the |1〉 → |n〉
transition resonance frequency.
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