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ABSTRACT

We study the scaling of negative magnetic response of the SRR from microwave to upper THz frequencies. We
show, that the linear scaling breaks down for SRR sizes below the order of 1µm. This breakdown is due to the
contribution of the finite electron mass to the inductance of the effective LC oscillator. While at microwave
frequencies metals can be treated as near-perfect conductors, close to optical frequencies they rather constitute
lossy negative dielectrics. We also study the scaling of the losses in SRR as well as the higher order excitations
or plasmon modes and their magnetic response. We discuss the non-resonant diamagnetic response of the
SRR and the corresponding corrections to the shape of the frequency dependent effective permeability of the
metamaterial. We discuss the connection of recently suggested alternative negative index metamaterial designs
in a unified picture.
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1. INTRODUCTION

The idea of left-handed (LH) materials, i.e. materials with both negative electrical permittivity (ε) and magnetic
permeability (µ), where the electric field (E), magnetic field (B), and wave vector (k) form a left-handed
coordinate system, was developed by Veselago1 decades ago. However, it was only recently that such materials
were investigated experimentally,2–4 despite their rich physics and the large number of associated potential
applications, e.g. in the formation of a perfect lens.5 The first experimental realization of LH-materials was
achieved by separately constructing ε < 0 and µ < 0 components, and then by combining them together forming
a left-handed material (LHM). Although it has been well known how to obtain a ε < 0 material easily (e.g. using
wire arrays6), the realization of µ < 0 response (especially at high frequencies) has been a challenge, due to the
absence of naturally occurring magnetic materials with negative µ. The possibility of the realization of a µ < 0
material was predicted in 1999 by Pendry et al., who suggested a design made of concentric metallic ring with
gaps, called split ring resonators (SRRs) which exhibits a µ < 0 regime in the vicinity of the magnetic resonance
frequency ωm of the SRR structure.7

In the past few years there has been ample proof for the existence of Negative Index Materials (NIMs) in the
GHz frequency range. A lot of groups were able to fabricate2, 8–10 NIMs with an index of refraction n = −1 with
losses of less than 1dB/cm. Recently different groups observed indirectly11–14 negative µ at the THz region. In
most of the THz experiments11, 13, 14 only one layer of SRRs were fabricated on a substrate and the transmission,
T , was measured only for propagation perpendicular to the plane of the SRRs, exploiting the coupling of the
electric field to the magnetic resonance of the SRR via asymmetry.15 This way it is not possible to drive the
magnetic permeability negative. Also, no negative n with small imaginary part has been observed yet at the THz
region.16, 17 One reason is that is very difficult to measure with the existing topology of SRRs and continuous
wires both the transmission, T , and reflection, R, along the direction parallel to the plane of the SRRs. So
there is a need for alternative, improved and simplified designs that can be easily fabricated and experimentally
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characterized. This was recently achieved in the GHz region18, 19 and in the THz region16, 17 by the use of finite
length wires and the fish-net topology. Very recent work has moved the negative refractive index at optical
wavelengths.20, 21 Of course, the losses are large in these high frequencies.

In this manuscript, we will present results of the magnetic response of SRRs as the size of SRRs reduce in
size. As shown Zhou et. al.,22 scaling (ωm vs 1/a) is obeyed for a > 500nm, while for smaller a, the magnetic
resonance frequency saturates. We have systematically studied the current density as well as the magnetic
response of the SRRs. We have also calculated the losses of the SRRs as their size decreases. It is found that
losses increase as the size of the SRRs decreases. We have also shown that the effective magnetic permeability
µ(ω) does not approach 1 as ω → 0 and ω → ∞. This is due to the diamagnetic response of the SRRs. We
present numerical results which support this conclusion. One way to increase the magnetic resonance frequency
ωm is to introduce four-cut SRRs.22 We have systematically studied ωm versus the size of the four-cut SRRs.
As in the case of the one-cut SRRs, scaling (ωm ∼ 1/a) is obeyed for a > 500nm while for a < 500nm saturation
of ωm is also obtained. Using the retrieval procedure24, 25 we have calculated µ(ω), both the real and imaginary
part of µ(ω), for the one-cut and four-cut SRRs. As the size of the SRR ( for both the one-cut and four-cut
SRRs) decreases the resonance of µ(ω) gets weaker and the imaginary part of µ(ω) gets stronger. This also
means that the losses become larger as the size of the SRR gets smaller.

2. SRR MAGNETIC RESPONSE AND SCALING TO THZ FREQUENCIES

A common constituent to provide magnetic response in metamaterials is the Split-Ring Resonator (SRR). The
SRR in its simplest form consists of a highly conductive metallic ring which is broken in one (or several) location(s)
by a non-conductive gap of air or other dielectric materials. If this ring is placed in a temporally varying magnetic
field an electric circular current is induced in the metallic ring which in turn leads to charge accumulating across
the gaps. The electric field which builds due to the charge at the gap counteracts the circular current leading to
oscillations of the current in the SRR ring in which energy is converted back and forth between the electric field
energy stored (predominantly) in the vicinity of the gaps and magnetic field energy concentrated in the region
enclosed by the ring. The SRR is thus a resonator which couples to a perpendicular magnetic field and can be
characterized by the effective capacitance of the gap(s) and effective inductance of the loop define by the ring.
It can be understood in terms of a resonant LC circuit with a resonance frequency ω2

m = 1/LC, where L is the
inductance and C is the the capacitance of the SRR. The resonant response of the circular current in the SRR
to an external magnetic field leads to a resonant magnetic moment which may reach large negative values for
a relatively small frequency region just above the resonance frequency. A metamaterial made up of a periodic
array of SRRs such that the size of the SRR is much smaller than the wavelength of an incident electromagnetic
wave around the resonance frequency behaves as a homogeneous effective medium with a negative (resonant)
permittivity µeff(ω).

2.1. Scaling of the resonance frequency

SRRs were first employed at microwave frequencies, i.e. at some tens of GHz. In this region the metals which
make up the SRR ring have a very high conductivity, hence a large essentially imaginary permittivity, and can
be considered near-perfect conductors which exclude all electric field from the volume of the metallic ring. As a
consequence, the resonance of the SRR is entirely determined by the geometry of the SRR and the (essentially
frequency independent) dielectric properties of the surrounding materials like the substrate that carries the SRR
rings. Therefore, for a given SRR size, a, the resonance frequency, ωm, scales as 1/a, keeping the vacuum speed
of light invariant. This conveniently allows to shift the negative permittivity band of the SRR metamaterial just
shrinking the structural size of the SRR throughout the microwave region. As shown by Zhou et al.22, 23 this
linear scaling does not extend into the upper THz and optical region. Instead, ωm saturates if the structural size
is decreased to the order of some 500nm. The saturation of ωm is due to the contribution of the kinetic energy
of the moving electrons in the SRR ring to the energy stored in the SRR resonance which, at high frequencies,
becomes comparable to the energy stored in the magnetic field. This kinetic energy, Ek = (neV )mev

2
e/2 = LeI

2/2
(here, ne is the electron density, V the volume carrying the current, I , and me the electron mass and ve the
electron drift velocity, i.e. proportional to the current) can be identified with an additional inductance Le and
adds to the magnetic field energy, Em = LmI2/2, given by the geometric inductance Lm which dominates the
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Figure 1. Scaling of the magnetic resonance frequency ωm with the linear size of the SRR. (a) Scaling for single-gap
SRR for different ring widths w, thicknesses t, gap width g, and fixed side length l = 0.8 in units of the unit cell size a;
(b) Scaling for one-, two-, and four-gap SRR of equal size in comparison. The SRR metal is gold, described by a Drude
model dielectric function (ωp = 2175THz, ωτ = 6.5THz).

scene at low frequencies. Careful analysis shows that Le scales like ∼ 1/a with the linear structural size of the
SRR while the geometric inductance, Lm, and the geometric capacitance, C, contributed by the gap(s) in the
SRR ring scale ∼ a. Thus the magnetic resonance frequency, ωm = [(Le + Lm)C]−1/2

∼ [1 + const a2]−1/2, has
to saturate to a constant value for small enough structure size a → 0. To a smaller extend, also the capacitance
has to be corrected to account for the polarization of the SRR ring.27

The saturation of ωm sets limits to the geometric scaling of the magnetic resonance to higher frequencies
towards the optical region. However, the actual limiting frequency strongly depends on the actual parameters of
the SRR. In Fig 1, we present simulation results obtained for single-ring SRRs similar to the designs previously
used in experiments in the 100THz range.13 The propagation direction of the incident EM wave is in the SRR
plane with the magnetic field perpendicular to the SRR ring, driving the magnetic resonance. The electric field is
chosen in the symmetry direction of the SRR to avoid electric coupling to the magnetic resonance.15 In Fig. 1a,
the scaling of single-gap SRRs with different values for ring width, metal thickness and gap width are shown.
The linear scaling up to lower THz frequencies and SRR dimensions of just below the order of 1µm is clearly
visible. For smaller SRR sizes the resonance frequency starts to saturate, reaching its limiting value for SRR sizes
of about 50 . . .100nm. The actual value of the limiting frequency, however, shows some significant variability,
reaching (for the chosen examples) from 30 to 100THz. Higher saturation values for ωm at a given structural
size of the SRR can be achieved increasing the gap size, the ring width, or the thickness of the metal trace; i.e.
just parameters which increased the resonance frequency of the SRR in the microwave regime.28 An alternative
possibility to increase the limit of ωm is to increase the number of gaps in the SRR ring as shown in Fig. 1b. For
the two- and four-gap SRR our simulations show negative magnetic response up into the optical region (500 THz
for 4-gap), although the minimum of the effective permeability is very close to zero (Re µ ≈ −0.1) in this case
and the losses substantial (Im µ ≈ 0.5).

In Fig. 2, we present numerical data for the real and the imaginary part of the effective magnetic permeability
µ(ω) for the scaling of a single-gap SRR from a (linear) unit cell size of 100µm down to 50nm. Notice that the
resonant response of µ(ω) does not change much for sizes > 1µm, i.e. while the linear scaling of the resonance
frequency ωm holds, but gets rapidly weaker as the size of the system decreases in the nanometer region. Notice
also that the effective permeability of the single-cut SRR approaches unity for high frequencies where the resonant
response dies out. For the lower frequency cases we observe that the µ(ω) curves start for frequencies smaller
the corresponding ωm slightly below unity and do not symmetrically return to unity above ωm. This is the
diamagnetic response of the SRR and will be discussed below. Also the peak in the imaginary part of µ(ω) gets
smaller, and its width increases as the size of the SRR gets smaller.
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Figure 2. Scaling of the real (a) and imaginary (b) part of the retrieved effective permeability for different sizes a of the
SRR unit cell: a = 100µm (red), 10µm (green), 1µm (blue), 167nm (pink), 100nm (turquoise), and 50nm (black). The
SRR metal is given by a Drude model for gold.
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Figure 3. Scaling of losses: (a) Scaling of absorption in single unit cell with unit cell size (for unit energy influx to the
unit cell) for the same SRR geometries as shown in Fig. 1a; (b) Loss power density per incident Poynting vector S as
function of frequency for the same SRR unit cell sizes as shown in Fig. 2.
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Figure 4. Magnetic moment as a function of frequency for open and closed SRR at 10µm and 100nm unit cell size.
Dependence on the SRR ring width: w = 1µm (red), 2µm (green), 3µm (blue) for the 10µm unit cell size open (a) and
closed (b) SRR; w = 10nm (red), 20nm (green), 30nm (blue) for the 100nm unit cell size open (c) and closed (d) SRR.

2.2. Scaling of losses

Another important parameter is the loss in the SRR and its scaling by decreasing the SRR size. The loss is
related to the loss peak of the imaginary part of the effective magnetic response µ(ω). In our simulation we have
the advantage to have access to the local EM fields and can therefor calculate the loss power given by the ohmic
loss directly as P =

∫
j · E dV , where the current density j is given by σE + ∂D/∂t and the material properties

εmetal(ω) of the SRR ring. In Fig. 3a, we show the scaling of the total (peak) loss power per SRR unit cell
with the size of the SRR from microwave to upper THz frequencies for some of the the single-gap SRR designs
already employed in Fig. 1a. It is clearly visible that for low frequencies the loss power per SRR increases inverse
proportional to the SRR size, i.e. the loss per SRR increases linearly with the resonance frequency ωm. In the
region where ωm saturates the loss power per SRR actually starts to decrease again. However, this is only due
to the vanishing resonances strength of the magnetic resonance as can be seen from Fig. 2a and is not helpful in
achieving lower loss metamaterials. Fig. 3b shows the behavior of the normalized loss power density per incident
Poynting vector (energy current density) for the single-gap SRR cases shown in Fig. 2. Also here the linear
increase of the loss with frequency for larger SRR sizes is evident while in the saturation region the resonance
dies out, effectively reducing the absorption. Note that not only the loss peak but also the non-resonant loss
around ωm increases at least linearly with omega and starts to dominate the total loss when the resonance dies
out and the associated absorption peak becomes small.

2.3. Resonant magnetic moment and diamagnetic response

The magnetic response of the SRR metamaterial is usually characterized by its effective permeability µ(ω).
This can be obtained via a retrieval procedure25 form the plane wave scattering amplitudes of a finite slab of
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Figure 5. Magnetic moment for open and closed SRR at 10µm and 100nm unit cell size a. Dependence on ring separation
d perpendicular to SRR plane in units of the unit cell size: d = 1/20 (red), 1/10 (green), 1/5 (blue), 1/2 (pink), and 1
(turquoise) for open (a,c) and closed (b,d) SRR.

metamaterial. In simulations where we have access to the local fields we can alternatively calculate the magnetic
moment density directly as (1/2)

∫
r× j dV with the current density j given by σE+∂D/∂t. In Fig. 4, we present

the calculated magnetic moment for SRRs and closed SRRs of different ring widths at a structural size of 10µm
(corresponding to a resonance frequency of ωm ≈ 3THz which is still in the linear scaling regime) and of 100nm
(corresponding to ωm ≈ 70THz and deep within the saturation regime for this geometry). For the SRRs we
observe the expected resonant shape of the real part (and imaginary part, not shown) of the magnetic moment
corresponding to the resonant behavior observed in µ(ω). If the gaps in the SRR are closed, the magnetic
resonance disappears as expected from the LC oscillator model. However in contrast to the simple resonance
model where the magnetic moment should approach zero below and above the resonance frequency, we observe
a saturation of M at a substantial negative value below and above the resonance. The shift is larger for ω > ωm

than for ω < ωm, but also occurs for the closed SRR. It can be explained by the diamagnetic response of the
SRR.

For microwave frequencies the metal of the SRR ring is a near perfect conductor. The SRR responds to the
external magnetic field with a circular current around the ring polarizing the gap. This is the LC resonator.
The current can flow only in a thin layer near the surface extending up to the order of the skin depth δs(ω) into
the metal. At low frequency (good conductor) the skin depth is dominated by the imaginary part of the metal’s
dielectric functions and is given by δs(ω) ≈ (σµoω)−1/2, where σ is the DC conductivity of the metal. Because

of the scaling δs ∼ ω
−1/2
m ∼ a1/2 near the resonance the ratio of this surface layer to the width of the SRR ring

(width ∼ a) becomes ∼ a−1/2 and is small in the microwave region (typically 1/10th of the ring width). This
allows for an additional current in response to the external magnetic field which flows around the edges of the



SRR metallic ring (outer and inner circumference and along the faces of the gap) in the plane perpendicular to
the external magnetic field, expelling the latter from the area of the metal of the ring. This is the diamagnetic
response of the metallic ring. The associated negative magnetic moment leads to the shift observed for ω < ωm.
While for frequencies below the resonance the impedance of the gap is large, it becomes small for frequencies
well above the resonance. This allows for the diamagnetic current to flow now at the outer circumference of the
ring and ”across” the gap, leading to exclusion of the magnetic field from the entire enclosed area of the SRR
and hence a stronger negative magnetic moment and diamagnetic response. This second type of diamagnetic
response is also expected from the closed metallic ring and exactly what we see for the closed SRR’s magnetic
moment in Figs. 4 and 5. The diamagnetic response due to the metallic area increases with increasing ring width
as shown in Fig. 4a. In contrast the diamagnetic response of the entire enclosed area for ω > ωm in Fig. 4a
and all ω in Fig. 4b is essentially independent on the ring width. Note that the structures above the magnetic
resonance are due to higher (electric and magnetic) resonances of the SRR and due to periodicity band structure
effects when the wave length becomes comparable to the SRR unit cell size and will not be discussed here.

For higher THz frequencies the metals of the SRR ring can not be considered near perfect conductors anymore.
The dielectric function of the metal starts to be dominated by its real part. Consequently the previously used
approximation of the skin depth breaks down and has to be replaced by δs = (c/ω) Im [εmetal(ω)]−1/2 which
saturates to a value of the order of 10nm at optical frequencies. That means, scaling the dimension of the SRR
down beyond the order of 1µm the skin depth increases relatively to the width of the SRR such that the first kind
diamagnetic currents (which were flowing anti-parallel on the inner and outer edge of the ring) get suppressed.
Hence we still see much less diamagnetism below ωm in Fig. 4c, and the negative magnetic moment is stronger
for a wider ring. Above the resonance and for the closed ring in Fig. 4d we see essentially the same behavior as
explained above. Only the higher loss leads to a weaker diamagnetic response. Note that due to the saturation
of ωm the resonance moves to smaller a/λ.

In Fig. 5 we present the dependence of the magnetic moment of the SRR on the density of SRRs in the
direction perpendicular to the SRR plane. Stacking the SRRs closer basically has two effects: (i) the magnetic
moment per volume increases leading to a larger amplitude of the magnetic resonance and stronger diamagnetism,
and (ii) the resonance frequency ωm reduces because of the enhancement of the loop inductance of the SRR
ring due to the mutual inductance of neighboring rings in stacking direction (Fig. 5a). As one would expect, for
a strong magnetic response of the SRR metamaterial a dense packing of the SRRs is desirable. In Fig. 5b, we
observer the strange behavior that increasing the perpendicular separation of the ring the resonance frequency
ωm does slightly decrease as opposed to the expected increase which is seen for larger structures (Fig. 5a). This
may be explained by noticing that all cases in Fig. 5b are deeply in the saturation regime for ωm if now the
geometric inductance is enhanced by moving the rings closer, the saturation (Le � Lm) is a little bit ”postponed”
and ωm moves slightly higher, i.e. closer to the extrapolated linear scaling curve ωm ∼ 1/a.

2.4. Higher order modes

For microwave frequencies the LC resonator circuit picture is a good approximation of the SRR. The main reason
for this is that at such low frequencies we can neglect the (real part of the) polarization of the metal due to the
huge conductivity and assume that charges accumulated in the very small area of the faces of the gap(s) and the
current is spatially constant along the ring. At higher THz frequencies those assumptions are no longer valid.
Here the current has to be treated as a charge density wave along the SRR and shows plasmonic resonances. As
a very crude picture we could imagine the resonances of the SRR as charge density waves on a rod of a length
equal to the arc length of the SRR ring. This rod supports plasmonic modes (plasmonic means in this situation
that the inductance is coming from the electron mass and the capacitance from the external electric field over
the surface of the rod) which occur at discrete frequencies whenever we have current nodes at the ends of the
rod. This picture is of limited value: (i) the EM response of the modes, especially the classification of electric
vs. magnetic response, depends on the geometry and is entirely different for a U shaped SRR than for a straight
rod although the qualitative current distribution over the arc length is equivalent; (ii) the plasmonic dispersion
depends on the geometric inductance, i.e. the energy stored in the external field outside the metal, which is much
larger for the SRR than for the rod and spatially non-uniform along the SRR ring; (iii) the modes of coupling are
different. Nevertheless, considering the current distribution is an essential tool for understanding the resonant
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Figure 6. Distribution of the perpendicular component of the surface electric field (color scale; red positive, blue negative)
and the bulk current density (arrows) for the lowest few resonant modes of the SRR. The SRR metal is made of a Drude
model for gold (ωp = 2175THz, ωτ = 6.5THz), the geometry parameters are: ax = ay = 1µm, az = 200nm (unit cell size),
lx = ly = 800nm (arm length), w = 100nm, t = 50nm (ring width and thickness, respectively). The current distributions
are shown temporally π/2 phase shifted against the charge distribution.

modes of a SRR at higher THz frequencies. In the microwave region only the remnants of the lowest order mode
survive.

Fig. 6 shows the distribution of the current and charge density for the lowest three resonant modes of a U
shaped SRR of 800nm side length. The current is obtained directly from the simulation, the charge density
relates to the perpendicular electric field at the surface of the metal. All fields are time harmonic; the current
distributions are shown temporally π/2 phase shifted against the charge distribution. The first three panels
(a,b,c) show the lowest three resonances for normal incidence to the SRR with the electric field breaking the
symmetry of the SRR and thus coupling the the ”magnetic” resonance.15 The distribution is qualitatively
equivalent to the pure magnetic coupling (i.e. propagation in the SRR plane with perpendicular magnetic field),
which case is however hard to realize experimentally at such high THz frequencies. All three modes have non-
zero magnetic moment coming from all three ”arms” of the SRR. The number of current nodes (where charge
accumulates) increases with the resonance frequency from two (fundamental mode, corresponding to LC circuit),
one on either side of the ”gap”, to four and six, which have additional nodes inside the continuous metal. The
electric excitation of these modes occurs via the polarization of the bottom arm of the SRR by the incident EM
wave. For a straight rod these SRR modes would correspond to the λ/2, 3λ/2, and 5λ/2 mode; for the rod there
is however no magnetic moment associated with them. Note that these modes also expose an electric dipole
moment; therefore the SRR has a combined magnetic and electric response in this configuration. For the other
polarization, normal incidence to the SRR with the electric field along the symmetry axis of the SRR, shown in
panels (d,e,f) we see the analog plasmonic modes with three, five and seven current nodes; all of which reflect
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Figure 7. Magnetic moment (a) and Ohmic loss (b) as function of frequency for normal incidence to the SRR plane. The
electric field direction is parallel to the cut side, such that it can excite the magnetic resonance. The current distribution
(c) along the metal ring of the SRR as function of the arc length. The SRR geometry is the same as in Fig. 7a, except
that the arm length ly varies as indicated in panels (a,b).

the mirror symmetry of the SRR and can thus have no magnetic moment. For the rod, they would correspond
to the even, λ, 2λ, and 3λ modes (which cannot be exited for the rod because of their vanishing dipole moment).
In the case of the SRR they do possess electric dipole moment in the E-direction, i.e. along the two parallel arms
of the SRR, and represent a purely electric response of the SRR.

In Fig. 7, we show the magnetic moment (a) and the loss power (b) for the magnetic resonant modes of the
SRR as a function of frequency for three different U shaped SRRs with different lengths of the two parallel arms.
It is clearly seen that the lowest order magnetic resonance provides the strongest magnetic response; but also the
higher modes have non-zero magnetic moment. As one expects, reducing the length of the parallel arms reduces
the magnetic moment. It also shifts the resonances to higher frequencies. This is a combined effect of shortened
arc length and reduced geometric loop inductance. In the limit of only the bottom arm left (i.e. a straight rod)
the magnetic response would vanish. Note, that the loss decreases much slower with decreasing arm length than
the magnetic moment, reconfirming the importance of loop area for strong magnetic response which was well
known form the microwave designs.

Fig. 7c shows the distribution of the total current (current density j integrated over the cross-section of the
SRR ring) over the arc length around the SRR ring for the three resonant modes in Fig. 6(a,b,c). We clearly see
the different number of current nodes, which do not reach zero (for the higher modes) because of the superposition
with the non-resonant response of the lower order modes (which are fairly broad due to the high losses). Also
note the non uniform spacing of the nodes for the higher orders which is different from the straight rod and due
to the curvature of the SRR and the coupling to the bottom arm only.

3. ALTERNATIVE STRUCTURES

Although the SRR is well suited as a local magnetic resonator in metamaterials and can be scaled, although with
limitations, up to near-optical frequencies it has the disadvantage that by itself it does not provide a negative
refractive index. To obtain a negative effective refractive index neff(ω) we need, in some finite frequency interval,
simultaneously negative (and essentially real) values of the effective permeability µ(ω) and permittivity ε(ω);
Hence a simultaneous negative magnetic and electric response is needed. In the microwave region, a negative
permittivity is usually achieved by combining the SRRs with an array of thin continuous wires which provide a
plasmonic ε(ω) with effective plasma frequencies in the microwave region. This approach is not well suited for
THz frequencies because of dimensional problems and the absence of good conductors. Also the SRR itself has
been shown to expose an electric resonance (analog to that of a short piece of straight wire) that can provide a
resonant negative effective ε(ω), similarly to the resonant µ(ω) of the magnetic resonance. This electric resonant
response of the SRR is much stronger than the magnetic response; however, due to the principal geometry of the
SRR it (almost) always occurs well above the magnetic resonance frequency ωm such that there is virtually no
chance to make the negative µ(ω) and ε(ω) regions overlap. (because the ε(ω) resonance is much stronger and



Figure 8. Geometries for short-wire pair arrays and the fishnet structure. Both consist of a patterned metallic double
layer (yellow, usually Au) separated by a thin dielectric layer (blue).

the ε < 0 region therefore wider, we would have to move the µ(ω) resonance into the negative permittivity region
of the electric resonance.) Alternatively, a pair of parallel short wires can be uses as a magnetic resonator.30 This
geometry can be viewed as an extremal case of a two-gap SRR ring where the two continuous arms become long
but finite while the gap-bearing arms become short and the gaps wide. This limiting case of the two-gap SRR in
principle can show both magnetic (resonant circular ”ring” current) and electric (resonant linear current parallel
in both continuous arms) resonances; because of the greatly reduced loop inductance, here ωm increases and can
move very close to the electric resonance frequency ωe. Equally, the same geometry may be viewed as two close
by electric short wire resonators (resonant linear electric current oscillating along the finite wire determined by
the wire’s self-inductance and the capacitance between it’s ends) which couple such that the resonance splits into
two modes which have either anti-parallel linear currents (magnetic resonant mode; finite magnetic moment, zero
electric moment) or parallel currents (electric resonant mode; zero magnetic moment, finite electric moment)
in the adjacent short wires. The parallel short wires can again be considered as LC circuit; the inductance
composes of the straight wire self- and mutual inductance (and at upper THz frequencies, the contribution from
the electron mass), the capacitance is given by the capacitance between the wires and that from end to end
of each short wire. If this basic resonator element is arranged in a periodic array to form a metamaterial we
have additional coupling between adjacent unit cells. Qualitatively, we can distinguish two limiting cases which
are shown in Fig. 8 (left) and Fig. 8 (right). These designs have the advantage over SRR based metamaterials
that magnetic response and a negative refractive index can be achieved for normal incidence to the layered
structure. For SRR based designs propagation in the SRR plane is required. This becomes essential for high
frequencies where layered structures are readily available to the experiment but true volume metamaterials are
very complicated to achieve.

In the case of separate short wire pairs shown in Fig. 8 (left), the short wires couple in longitudinal direction
capacitively. The response is magnetic resonant and electric resonant; the coupling capacitance can then be used
to shift the electric resonance frequency relative to the magnetic resonance and make the negative responses
overlap29 to achieve a negative effective index. Metamaterials made of a single double-layer of short-wire pairs
have been fabricated and demonstrated to have resonant magnetic response in the upper THz region.16 Although
the reduction to a very simple design providing magnetic and electric resonant response simplifies fabrication
these structures have the tendency to have huge losses, attributed in part to employing two resonances with
the associated resonant losses. An alternative coupling of the short-wire pair in a periodic metamaterial is to
introduce ”thin” interconnects between the short wires of adjacent unit cells in longitudinal direction, hence
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Figure 9. Retrieved real and imaginary part of the effective index of refraction (a), effective permeability (b), and
effective permittivity (c) for a fishnet structure like shown in Fig. 8 (right). The parameters used are ax = ay = 600nm,
az = 205nm for the size of the unit cell; wx = 270nm, wy = 120nm, t = 60nm, s = 45nm, and a dielectric constant
εsubstrate = 2 for the dielectric layer. The metal is gold, describes by a Drude model dielectric function (ωp = 2175THz,
ωτ = 6.5THz).

facilitating an inductive instead of an capacitive coupling. Conveniently, the width of the short wires in H-
direction can be extended across the unit cell to enhance the magnetic response (volume filling factor). The
result of this operation is the ”fishnet” structure31 shown in Fig. 8 (right). Here, the wide block wx × ay is what
remains from the short-wire pair, the thin bridges in E-direction are the inductive interconnects. This structure
exposes the magnetic resonant response of the short-wire pairs (here as anti-parallel currents in E direction in the
wide blocks) but the (lowest) electric resonant is replaced by a electric plasmonic response due to the replacement
of the longitudinal coupling capacitance by a coupling inductance. As a simple image, one may imaging this as
a combination of short-wire pair (magnetic resonance) with continuous wires (providing the electric plasmonic
response). The missing electric resonance tend to reduce the losses in this case.

In Fig. 9 we show the retrieved effective parameters for such a ”fishnet” structure working in the near
infrared frequency range. The resonant response in µ(ω) reaching µ ≈ −1 near 255THz and the plasmonic
negative permittivity are clearly visible. The anti-resonant spectral feature in ε(ω) around the magnetic resonance
frequency ωm and the accompanying negative imaginary part are periodicity artifacts24 caused by the relatively
small wave length over unit cell size ratio of only ≈ 6 in this case.

4. CONCLUSION

Using detailed numerical simulations we have systematically studied the scaling of the resonance frequency ωm of
single- and multi-gap SRRs in the THz region. It has been found that ωm scales inversely proportional to the size
a of the unit cell of the SRR at microwave and lower THz frequencies. Above these frequencies, ωm saturates.
The saturation value depends on the geometry and the number of SRR gaps; for single-gap SRR around 100
THz, for 4-gap SRR 500 THz can be reached. The reason for the saturation is due to the increased kinetic
inductance of the electrons (compared to the geometric inductance of the SRR ring). We have shown that losses
scale linearly with the resonance frequency until the saturation of ωm. For higher frequencies losses saturate too
and eventually decrease slightly as the resonance dies out. The non-resonant background loss increases in all
regions with frequency. We found negative effective permeability up to 500THz in the 4-gap SRR design. The
saturation of the resonance magnetic frequency, as well as the losses, are responsible for the disappearance of
the negative magnetic SRR response. We have shown that the SRR also provides a non-resonant diamagnetic
response which differs below and above the magnetic resonance as either only the metal area of the SRR ring
or the whole enclosed area of the SRR contribute. The diamagnetic response can explain the derivation of µ(ω)
from unity which is observed at low and high frequencies. We studied higher order excitations or plasmon modes
which occur at THz frequencies. Consideration of the charge-density waves on the SRR ring is important to
understand the behavior. Finally, we discuss two previously suggested alternative metamaterial designs and
explain their relation in a unified picture.
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