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ABSTRACT: The method of force tracing is employed to
examine the optomechanical interaction between two and four
Luneburg lenses. Using a simplified analytical model, as well as a
realistic numerical model, the dynamics of elastic and fully
inelastic collisions between the lenses under the illumination of
collimated beams are studied. It is shown that elastic collisions
cause a pair of Luneburg lenses to exhibit oscillatory and
translational motion simultaneously. The combination of these
two forms of motion can be used to optomechanically
manipulate small particles. Additionally, it is addressed how
fully inelastic collisions of four Luneburg lenses can help us
achieve full transparency as well as isolating space to trap
particles.
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The mechanical properties of light have been the topic of
debate from the early stages of the emergence of

electromagnetic wave theory.1−5 The optomechanical proper-
ties of light have been the subject of much study, but despite
this, the area of optical force is still an active area of research,
and specifically, the enigma of the momentum of light in a
medium is still under scrutiny.6−11 The well-known Abraham−
Minkowski dilemma, the definition of the Poynting vector, and
the interpretation of the stress tensor as well as its relation to
the optical force and torque densities are the major concerns of
the current fundamental studies on the optical force. In spite of
these theoretical uncertainties, optical forces have been
employed practically in fascinating applications: microscopy
and optical imaging,12,13 optical tweezers and particle
trapping,14−16 optical tractor beams and optical lift,17−22 light
driven motors,23 and radiation pressure on optical cloaks24,25

are a few examples out of many. With the advent of new
fabricating and characterization technology and development of
theoretical studies, it is expected that optical force will play a
big role in novel applications in the near future.
The conventional approach to calculate the optical force in a

medium is to solve the Maxwell equations for the electro-
magnetic fields, construct the elements of the stress tensor, and
integrate the divergence of the stress tensor over the volume of
the interest.26,27 However, applying this standard full-wave
method in complex media can be technically hard or intensively
time-consuming. Alternatively, by taking advantage of the ease

provided by the geometrical optics and relying on its sufficient
accuracy under some restrictions, which are met in many
scenarios, the authors proposed a new method called “force
tracing” to trace the optical force field along the trajectories of
light in a complex medium.28 In ref 28, the authors took the
electromagnetic fields as quasi-plane waves with slowly
changing amplitudes and rapidly fluctuating phases as
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where ω is the angular frequency, k ⃗ is the wave vector, k0 = ω/c,
c is the speed of light in free space, and both E⃗0 and H⃗0 are
vectors with approximately constant magnitudes. On the basis
of this assumption, which is the core of geometrical optics, and
with the help of the Hamiltonian-based ray equations,29,30 after
a lengthy algebraic manipulation, the Lorentz force density in a
lossless isotropic medium is simplified to

⟨ ⃗ ⟩ = ⃗ × ⃗f
n

k L
1

normalized 4 k (2)

where n is the refractive index and L⃗k = eẑ [kx (dky/dτ) − ky
(dkx/dτ)]. It should be mentioned that the force density in eq 2
has been normalized by ε0 |E⃗0|

2/2, with ε0 being the free space
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permittivity. An interested reader is referred to ref 28 for more
details on the derivation of eq 2, as well as the proposed
formulation for the force tracing in anisotropic media and the
surface force density at the interfaces between two different
media. However, it should be noted that the anisotropic

formulation in ref 28 is true only for the cases with diagonal
constitutive tensors, and for nondiagonal cases, it should be
modified.
In this article, we use force tracing technique to study the

dynamics of optomechanical interaction between Luneburg

Figure 1. (a) Ray trajectories in a Luneburg lens; (b) a collimated beam shining from left-side pushes the Luneburg lens; (c) rays entering from a
single point pull the Luneburg lens; (d) the performance of two touching Luneburg lenses; (e) the complementarity of two touching Luneburg
lenses. A point located on one of the two Luneburg lenses is imaged perfectly on the other one.

Figure 2. Optical force field applied by the light rays illuminating from left side onto two nontouching Luneburg lenses. The optical force on the first
Luneburg lens is always pushing and constant. The optical force on the second lens can be pushing, pulling, or null, subject to its distance from the
first lens.
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lenses under illumination of collimated light beams. As will be
discussed later, owing to the spatial variation of optical forces
acting on a system made up of more than one Luneburg lens,
the collision between the lenses causes oscillatory and
translational motions. Both elastic and fully inelastic collisions
will be considered, and through a simplified analytical as well as
a more realistic numerical model, the equation of motion will
be derived and discussed in detail. The collision of Luneburg
lenses under illumination of light leads to optical transparency,
space isolation, and spatially temporally modulated light beams.
These results are interesting for a wide range of researchers and
can have important applications in biosensing, particle imaging,
particle transport, and particle trapping.

■ DISCUSSION AND RESULTS
A Luneburg lens29 is a spherically symmetric graded-index lens
with radius R0 and profile index n(r) = (2 − (r/R0)

2)1/2, which

focuses parallel rays shining from one side to a single point
(Figure 1a). Using the force tracing technique, it can be seen
that the parallel rays entering the lens would exert a positive
force (a force in the direction of the light ray) on it (Figure 1b).
However, as shown in Figure 1c, if rays enter into the lens from
a single point, they actually apply a negative force onto it, and
this is due to the fact that the horizontal components of the
momentum of the rays gradually increase after departing the
lens. If we have an even number of Luneburg lenses touching
each other sequentially, the total change in the momentum of
light entering parallel to a line cutting the touching points
would be zero and the combination of Luneburg lenses do not
feel any force. In other words, from the geometrical optics
point of view two Luneburg lenses are complementary media

and a point source on one of the lenses is perfectly imaged on
the other lens (Figure 1e). As an example (see Figure 1d), if we
have two Luneburg lenses, after traveling through this
combination, the exiting rays look as if there existed no object
in front of them (aside from 180° rotation), and hence, we
achieve transparency with inversion. However, if the lenses
detach from each other, not all the rays that impinge on the first
lens would reach the second one, and consequently, full
transparency would be absent. In addition, the momentum of
light would alter during its journey through the separated lenses
and Luneburg lenses have some optically mediated interaction
with each other.
By studying the force on each lens, as shown in Figure 2, we

see that as all the incoming rays arrive at the first lens, the force
on the first lens is always constant and acts in the direction of
the wave vector of light. However, the optical force on the
second lens is a function of the distance from the first one and
can be attractive, repulsive, or vanishing. Figure 3 shows the
total force acting on each lens as a function of the separation, as
calculated via a full-wave simulation in COMSOL. It can be
seen that the force on the second lens is attractive for small
separations, and hence, the second lens can become trapped
close to the first lens.

Figure 3. Total optical force applied on the two Luneburg lenses
calculated via the full-wave simulation and the approximated linear
optical force acting on the second lens for α = 4.65 × 10−12. It is
assumed that the summation of the Luneburg lenses’ radii is equal to
R. When Δx − R = 0, the lenses are touching.

Figure 4. Schematic of the two Luneburg lenses that are colliding due
to a collimated light beam illuminated from left side.

Figure 5. (a) Paths of the two spheres obtained from the realistic
numerical model for six collisions. At the collision moments, the two
curves touch each other. (b) The corresponding distance between the
two spheres versus time for the six collisions (m = 10−10, R1 = R2 = 1,
x1,0 = 0, and x2,0 − R = 0.5).
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As seen in Figure 3, the force acting on the second lens is a
complicated function of position. In order to obtain a
quantitative understanding of the motion of the lenses, let us
assume that the force on the first lens is constant, F1(x1) = F,
and the force on the second lens is a linear function of the
separation, F2 = −F + α(Δx − R), where the separation is given
by Δx = x2 − x1, with R = R1 + R2 the minimum separation
owing to the finite radius of the lenses. Here, α is a scaling
factor and should be chosen with care in order to make the
linear model resemble a realistic scenario. This form of the
force is analytically tractable but preserves the basic
phenomenology of the system and is a reasonable approx-
imation for small separations where the force on the second
lens remains negative. The approximated linear force for α =
4.65 × 10−12 is shown in Figure 3 as well. In the following we
consider two lenses of identical mass m1 = m2 = m and radius R1
= R2 = R/2, with initial positions and velocities, x1,0, x2,0 and u1,0
and u2,0 for the two lenses, respectively.
The constant, positive force F1 causes the first lens to

undergo linear motion. However, the force acting on the
second lens F2 is a negative restoring force that leads to the
collision between the two lenses and, hence, an oscillatory

motion. It proves to be convenient to change variables from the
absolute coordinates of the spheres to the center-of-mass
coordinates and the separation. In this coordinate system, the
linear and oscillatory motions separate and, hence, can be
solved individually.
The equation of motion for the separation Δx reads (see

Figure 4)
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Figure 6. (a) Paths of the two spheres obtained from the simplified
analytical model and the realistic model for five collisions. At the
collision moments, the two curves touch each other. (b) The
corresponding distance between the two spheres vs time for the five
collisions, where the solid-line graph is representing the realistic model
and the dashed-line curve representing the analytical model (m =
10−10, R1 = R2 = 1, F1 = 9.4 × 10−13, x1,0 = 0, x2,0 − R = 0.1, and α =
4.65 × 10−12).

Figure 7. (a) Paths of the two spheres obtained from the realistic
numerical model under the influence of damping. (b) The
corresponding distance between the two spheres vs time (m =
10−10, R1 = R2 = 1, x1,0 = 0, x2,0 − R = 0.5, and kd = 0.03).
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where Δx0 = x2,0 − x1,0 and Δu0 = u1,0 − u2,0 are the initial
separation and initial approach velocity, respectively.
Let us consider the case where the lenses start at rest u1,0 =

u2,0 = 0 (hence, Δu0 = 0). The first collision occurs when the
separation Δx = R, that is, when

α
α α

α
Δ − − + =
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⎤
⎦⎥x R F
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t

F1
[ ( ) 2 ]cosh

2
00

(6)

This leads to a first collision time of
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In an elastic collision, both the energy and momentum must be
conserved. From momentum conservation we have
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and from energy conservation
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where v1,0 and v2,0 are the incoming velocities of the lenses
before the collision and u1,1 and u2,1 are the outgoing velocities
after the collision. Thus, the outgoing velocity from the first
collision is
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The outgoing velocities Δu0 → Δu1 = −Δv0, and new initial
position Δx0 → Δx1 = R gives the initial conditions for the
second collision.
All the subsequent collisions can be computed recursively.

The ith collision occurs at
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Figure 8. (a) Full transparency achieved by inelastic collision of two pairs of Luneburg lenses; (b) inelastic collision of four Luneburg lenses under
vertical and horizontal shining of the collimated light beams to make an isolated area in between.
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and a separation velocity of
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As can be seen from this analytical formulation, the two lenses,
in the absence of damping, undergo an infinite number of
elastic collisions as long as the light is shining. However, if the
effect of damping is present, which is the case in realistic
situations, the model needs to be modified. In order to take the
damping into account, we introduce a damping factor kd in the
differential eq 3,
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eq 18 solves to
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where β = (4α + kd
2m/4m)1/2, D1 = [α (Δx0 − R) − 2F]/α, and

D2 = (2Δu0 + kdD1)/2β. From eq 19 it is seen that, under the
influence of damping, the oscillatory motion of the system
decays. Consequently, it is predicted that, as the collisions go
on, the range of fluctuations become smaller and smaller;
ultimately, the lenses touch each other and the negative
restoring force between the lenses vanishes. The oscillations
vanish and lenses remain in contact.
The center-of-mass, xc, can be rewritten as xc = (x2 + x1)/2 =

x1 + Δx/2. As the first lens experiences a constant force, the
equation of motion for x1 is easily solved. Hence, the center-of-
mass motion can be written as
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where χ(t) is the Heaviside step function, that is, χ(t) = 1 for t
≥ 0 and χ(t) = 0 for t < 0, and Δxi is computed via the
recursive formula above. Thus, we see that the center-of-mass
undergoes parabolic acceleration with a correction owing to the
interaction between the lenses. As matter of fact, the whole
system under the illumination of light exhibits two types of
motion: the local oscillatory motion of the two lenses and the
global translational motion of the whole system.
However, in the realistic scenario the force applied on the

second lens is a complicated function of position. As an
analytical solution for this complicated force is not possible, we
invoked a numerical analysis to obtain the equation of motion
of the two lenses. The result of such analysis is shown in Figure
5a,b. In Figure 5a, where the positions of the two lenses with
respect to time for six collisions are presented, the translational
and oscillatory motion of the lenses can be clearly observed, a
fact expected from the simplified analytical formulation. Shown
in Figure 5b is the distance between the spheres versus time,
which is a cyclical-shaped curve confirming the oscillatory
motion of the spheres. Note that the force acting on the first
lens is constant and it may seem that its motion should be a
parabolic function with respect to time. However, the velocity
of the first lens changes abruptly at the moments of collision,
which inflicts discrete corrections on the parabolic equation.

Hence, as seen in Figure 5a, the path of the first lens x1(t) looks
like an oscillatory function superimposed on a parabola. The
approximated linear model for small initial separations should
produce results that are reasonably close to those of the realistic
model. For the purpose of accuracy validation, for the case Δx0
= 0.1, our results corresponding to the realistic and analytical
(with the scaling factor α = 4.65 × 10−12) models are presented
in Figure 6a,b. Note that the linearized F2(x) for α = 4.65 ×
10−12 is shown in Figure 3, where it is seen that the linear and
realistic graphs for F2(x) match each other quite well for small
separations. Comparing the graphs provided in Figure 6, we see
that the analytical model is in good agreement with the
numerical model, which certifies the validity of the employed
approximation. We believe that the combination of the
oscillatory motion and the translational motion of the two
lenses can be utilized in applications such as imaging, trapping,
or time-space-modulated transportation of small particles. The
addition of damping and loss causes the amplitude of the
oscillations decay along the translational motion. This is shown
in Figure 7a,b, where the path of the lenses and distance
between them are depicted versus time. It is seen in Figure 7
that the period of collisions and the velocity of the lenses
decrease as time passes and the lenses approach each other
more and more. Eventually the oscillations are damped away
and the net force on the whole system of lenses tends to zero,
which makes the damping effect dominate and both the
translational and oscillatory motions stop.
The dynamic analysis presented above is for the completely

elastic collision between the Luneburg lenses. However, if the
lenses with velocities v1 and v2 collide in a completely inelastic
way, then after the collision, the lenses carry on their movement
together at velocity (v1 + v2)/2. This inelastic collision in
principle can be attained by employing mechanisms that cause
the lenses to stick together after the first collision, imposing
gradually increasing friction on the system or introducing a
proper potential barrier. The immediate consequence of such
an inelastic collision is the full transparency that we can achieve
by combining two pairs of Luneburg lenses, as depicted in
Figure 8a. As seen in Figure 8a, due to the complementarity in
each pair of Luneburg lenses, the well collimated rays enter the
lenses with no reflection, gradually travel through lenses, and
exit as if there were no object in front of them. Shown in Figure
8b is another setup that can be acquired by the inelastic
collision of Luneburg lenses. As noticed in Figure 8b, four
Luneburg lenses can be attached together by illuminating
collimated beams in horizontal and vertical directions. In this
way, the shared space between the lenses is almost empty of
light rays and, due to the symmetrical structure of the setup and
light rays, the optical force acting on particles within this space
is very small or vanishing. This space can be used to trap, sense,
or transport particles.
In conclusion, we reviewed the method of force tracing

briefly and being inspired by this method we considered the
optical force applied on a system consisting an even number of
Luneburg lenses. We studied the dynamics of the collision
occurring between the lenses under the illumination of
collimated light beams analytically and numerically. We showed
that for the elastic collision the system exhibits translational and
oscillatory motion, while for the fully inelastic case it has only
translational motion. Finally, we discussed how effectively such
a light−matter interaction can be used in various applications.
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